4 title: "Tutorial: Construct a new pipeline"
8 h1. Tutorial: Construct a new pipeline
10 Here you will write two new crunch scripts, incorporate them into a new pipeline template, run the new pipeline a couple of times using different parameters, and compare the results. One of the new scripts will use the Arvados API to look up trait→human→data relations and use this information to compile a collection of data to analyze.
14 * Log in to a VM "using SSH":ssh-access.html
15 * Put an "API token":api-tokens.html in your @ARVADOS_API_TOKEN@ environment variable
16 * Put the API host name in your @ARVADOS_API_HOST@ environment variable
18 If everything is set up correctly, the command @arv -h user current@ will display your account information.
20 h3. Git repository access
22 Pushing code to your git repository involves using your private key. There are a few ways to arrange this:
24 *Option 1:* Use an SSH agent, and log in to your VM with agent forwarding enabled. With Linux, BSD, MacOS, etc., this looks something like:
28 eval `ssh-agent` # (only if "ssh-add -l" said it could not open a connection)
29 ssh-add # (this adds your private key to the agent)
31 ssh-add -l # (run this in your VM account to confirm forwarding works)
34 With PuTTY under Windows, run "pageant", add your key to the agent, and turn on agent forwarding in your PuTTY settings.
36 *Option 2:* Edit code on your workstation and push code to your Arvados repository from there instead of your VM account. Depending on your @.ssh/config@ file, you will use names like @my_vm_name.arvados@ instead of @my_vm_name.{{ site.arvados_api_host }}@ in git and ssh commands.
39 git clone git@git.arvados:my_repo_name.git
45 *Option 3:* Edit code in your VM, and use git on your workstation as an intermediary.
48 git clone git@my_vm_name.arvados:my_repo_name.git
50 git remote add arvados git@git.arvados:my_repo_name.git
52 [...make edits and commits in your repository on the VM...]
54 git pull #(update local copy)
55 git push arvados master:master #(update arvados hosted copy)
58 Whichever setup you choose, if everything is working correctly, this command should give you a list of repositories you can access:
61 ssh git@git.{{ site.arvados_api_host }}
67 hello your_user_name, the gitolite version here is v2.0.2-17-g66f2065
68 the gitolite config gives you the following access:
72 h3. Set some variables
74 Adjust these to match your login account name and the URL of your Arvados repository. The Access→VMs and Access→Repositories pages on Workbench will show the specifics.
77 repo_url=git@git.{{ site.arvados_api_host }}:my_repo_name.git
78 repo_name=my_repo_name
81 h3. Set up a new branch in your Arvados git repository
83 We will create a new empty branch called "pipeline-tutorial" and add our new crunch scripts there.
86 mkdir pipeline-tutorial
89 git checkout -b pipeline-tutorial
90 git remote add origin $repo_url
93 h3. Write the create-collection-by-trait script
96 mkdir -p crunch_scripts
97 touch crunch_scripts/create-collection-by-trait
98 chmod +x crunch_scripts/create-collection-by-trait
99 edit crunch_scripts/create-collection-by-trait
105 #!/usr/bin/env python
111 trait_name = arvados.current_job()['script_parameters']['trait_name']
113 # get UUIDs of all matching traits
114 trait_uuids = map(lambda t: t['uuid'],
115 filter(lambda t: re.search(trait_name, t['name'], re.IGNORECASE),
116 arvados.service.traits().list(limit=1000).execute()['items']))
118 # list humans linked to these conditions
119 trait_links = arvados.service.links().list(limit=10000, where=json.dumps({
120 'link_class': 'human_trait',
121 'tail_kind': 'arvados#human',
122 'head_uuid': trait_uuids
123 })).execute()['items']
124 human_uuids = map(lambda l: l['tail_uuid'], trait_links)
126 # find collections linked to these humans
127 provenance_links = arvados.service.links().list(where=json.dumps({
128 "link_class": "provenance",
130 "tail_uuid": human_uuids
131 })).execute()['items']
132 collection_uuids = map(lambda l: l['head_uuid'], provenance_links)
134 # pick out all of the "var" files, and build a new collection
136 for locator in collection_uuids:
137 for f in arvados.CollectionReader(locator).all_files():
138 if re.search('var-.*\.tsv.bz2', f.name()):
139 out_manifest += f.as_manifest()
141 # output the new collection
142 arvados.current_task().set_output(arvados.Keep.put(out_manifest))
145 h3. Write the find-dbsnp-id script
148 touch crunch_scripts/find-dbsnp-id
149 chmod +x crunch_scripts/find-dbsnp-id
150 edit crunch_scripts/find-dbsnp-id
156 #!/usr/bin/env python
161 arvados.job_setup.one_task_per_input_file(if_sequence=0, and_end_task=True)
163 this_job = arvados.current_job()
164 this_task = arvados.current_task()
165 this_task_input = this_task['parameters']['input']
166 dbsnp_search_pattern = re.compile("\\bdbsnp\\.\\d+:" +
167 this_job['script_parameters']['dbsnp_id'] +
170 input_file = list(arvados.CollectionReader(this_task_input).all_files())[0]
171 out = arvados.CollectionWriter()
172 out.set_current_file_name(input_file.decompressed_name())
173 out.set_current_stream_name(input_file.stream_name())
174 for line in input_file.readlines():
175 if dbsnp_search_pattern.search(line):
178 this_task.set_output(out.finish())
181 h3. Commit your new code
184 git add crunch_scripts/create-collection-by-trait
185 git add crunch_scripts/find-dbsnp-id
186 git commit -m 'add scripts from tutorial'
189 h3. Push your new code to your Arvados git repository
191 Push the new "pipeline-tutorial" branch to your Arvados hosted repository.
194 git push origin pipeline-tutorial
197 h3. Note the commit ID of your latest code
199 Show the latest commit. The first line includes a 40-digit hexadecimal number that uniquely identifies the content of your git tree. You will specify this in your pipeline template in the next step to ensure that Arvados uses the correct version of your git tree when running jobs.
208 commit 37c7faef1b066a2dcdb0667fbe82b7cdd7d0be93
212 h3. Write the pipeline template
214 Make a directory called @pipeline_templates@ and create a file called @find-dbsnp-by-trait.json@.
217 mkdir pipeline_templates
218 edit pipeline_templates/find-dbsnp-by-trait.json
221 Copy the following pipeline template.
225 "name":"find-dbsnp-by-trait",
227 "create-collection":{
228 "script":"create-collection-by-trait",
229 "script_parameters":{
230 "trait_name":"Non-melanoma skin cancer"
232 "script_version":"YOUR_GIT_COMMIT_SHA1_HERE"
235 "script":"find-dbsnp-id",
236 "script_parameters":{
238 "output_of":"create-collection"
240 "dbsnp_id":"rs1126809"
242 "script_version":"YOUR_GIT_COMMIT_SHA1_HERE"
248 h3. Store the pipeline template in Arvados
251 read -rd "\000" the_pipeline < pipeline_templates/find-dbsnp-by-trait.json
253 arv pipeline_template create --pipeline-template "$the_pipeline"
256 @arv@ will output the UUID of the new pipeline template.
259 qr1hi-p5p6p-uf9gi9nolgakm85
262 The new pipeline template will also appear on the Workbench→Compute→Pipeline templates page.
264 h3. Invoke the pipeline using "arv pipeline run"
266 Replace the UUID here with the UUID of your own new pipeline template:
269 arv pipeline run --template qr1hi-p5p6p-uf9gi9nolgakm85
272 This instantiates your pipeline template: it submits the first job, waits for it to finish, submits the next job, etc.
274 h3. Monitor pipeline progress
276 The "arv pipeline run" command displays progress in your terminal until the pipeline instance is finished.
279 2013-07-17 05:06:15 +0000 -- pipeline_instance qr1hi-d1hrv-8i4tz440whvwf2o
280 create_collection qr1hi-8i9sb-haibhu51olihlwp 9e2e489a73e1a918de8ecfc6f59ae5a1+1803+K@qr1hi
281 find_variant qr1hi-8i9sb-sqduc932xb1tpff cad082ba4cb174ffbebf751bbe3ed77c+506+K@qr1hi
284 The new pipeline instance will also show up on your Workbench→Compute→Pipeline instances page.
286 h3. Find the output collection UUID
288 The output of the "find_variant" component is shown in your terminal with the last status update from the "arv pipeline run" command.
290 It is also displayed on the pipeline instance detail page: go to Workbench→Compute→Pipeline instances and click the UUID of your pipeline instance.
292 h3. Compute a summary statistic from the output collection
294 For this step we will use python to read the output manifest and count how many of the inputs produced hits.
296 Type @python@ at a command prompt and paste this script at the prompt:
301 hash = 'cad082ba4cb174ffbebf751bbe3ed77c+506+K@qr1hi' # Use your result here!
303 collection = arvados.CollectionReader(hash)
304 hits = len(filter(lambda f: f.size() > 0, collection.all_files()))
305 misses = len(filter(lambda f: f.size() == 0, collection.all_files()))
306 print "%d had the variant, %d did not." % (hits, misses)
312 4 had the variant, 3 did not.
315 h3. Run the pipeline again using different parameters
317 We can use the same pipeline template to run the jobs again, this time overriding the "trait_name" parameter with a different value:
320 wh-run-pipeline-instance --template qr1hi-p5p6p-uf9gi9nolgakm85 create_collection::trait_name=cancer
323 When this template instance finishes, run the same Python script on the new output collection to summarize the results.