4 title: "Tutorial: Search PGP data by trait"
8 h1. Tutorial: Search PGP data by trait
10 Here you will use the Python SDK to find public WGS data for people who have a certain medical condition.
14 <!-- _Explain the motivation in this example a little better. If I'm
15 reading this right, the workflow is
16 traits -> people with those traits -> presense of a specific genetic
17 variant in the people with the reported traits_ -->
19 <!-- _Rather than having the user do this through the Python command line,
20 it might be easier to write a file that is going to do each step_ -->
25 * Log in to a VM "using SSH":ssh-access.html
26 * Put an "API token":api-tokens.html in your @ARVADOS_API_TOKEN@ environment variable
27 * Put the API host name in your @ARVADOS_API_HOST@ environment variable
28 * Run the @python@ interactive shell.
30 If everything is set up correctly, you will be able to import the arvados SDK:
36 ...and display your account information:
39 arvados.service.users().current().execute()
42 h3. More prerequisites
51 List traits containing the term "cancer":
54 for t in filter(lambda t: re.search('cancer', t['name']),
55 arvados.service.traits().list(limit=1000).execute()['items']):
56 print t['uuid'], t['name']
60 <!-- _Should break this down into steps instead of being clever and making
61 it a python one-liner_ -->
67 qr1hi-q1cn2-8q57g2diohwnzm0 Cervical cancer
68 qr1hi-q1cn2-vqp4243janpjbyj Breast cancer
69 qr1hi-q1cn2-v6usijujcpwqrn1 Non-melanoma skin cancer
73 We will use the "Non-melanoma skin cancer" trait with uuid @qr1hi-q1cn2-v6usijujcpwqrn1@.
76 trait_uuid = 'qr1hi-q1cn2-v6usijujcpwqrn1'
81 List humans who report this condition:
84 trait_links = arvados.service.links().list(limit=1000,where=json.dumps({
85 'link_class': 'human_trait',
86 'tail_kind': 'arvados#human',
87 'head_uuid': trait_uuid
88 })).execute()['items']
91 <!-- _Same comment, break this out and describe each step_ -->
93 The "tail_uuid" attribute of each of these Links refers to a Human.
96 map(lambda l: l['tail_uuid'], trait_links)
102 [u'1h9kt-7a9it-c0uqa4kcdh29wdf', u'1h9kt-7a9it-x4tru6mn40hc6ah',
103 u'1h9kt-7a9it-yqb8m5s9cpy88i8', u'1h9kt-7a9it-46sm75w200ngwny',
104 u'1h9kt-7a9it-gx85a4tdkpzsg3w', u'1h9kt-7a9it-8cvlaa8909lgeo9',
105 u'1h9kt-7a9it-as37qum2pq8vizb', u'1h9kt-7a9it-14fph66z2baqxb9',
106 u'1h9kt-7a9it-e9zc7i4crmw3v69', u'1h9kt-7a9it-np7f35hlijlxdmt',
107 u'1h9kt-7a9it-j9hqyjwbvo9cojn', u'1h9kt-7a9it-lqxdtm1gynmsv13',
108 u'1h9kt-7a9it-zkhhxjfg2o22ywq', u'1h9kt-7a9it-nsjoxqd33lzldw9',
109 u'1h9kt-7a9it-ytect4smzcgd4kg', u'1h9kt-7a9it-y6tl353b3jc4tos',
110 u'1h9kt-7a9it-98f8qave4f8vbs5', u'1h9kt-7a9it-gd72sh15q0p4wq3',
111 u'1h9kt-7a9it-zlx25dscak94q9h', u'1h9kt-7a9it-8gronw4rbgmim01',
112 u'1h9kt-7a9it-wclfkjcb23tr5es', u'1h9kt-7a9it-rvp2qe7szfz4dy6',
113 u'1h9kt-7a9it-50iffhmpzsktwjm', u'1h9kt-7a9it-ul412id5y31a5o8',
114 u'1h9kt-7a9it-732kwkfzylmt4ik', u'1h9kt-7a9it-v9zqxegpblsbtai',
115 u'1h9kt-7a9it-kmaraqduit1v5wd', u'1h9kt-7a9it-t1nwtlo1hru5vvq',
116 u'1h9kt-7a9it-q3w6j9od4ibpoyl', u'1h9kt-7a9it-qz8vzkuuz97ezwv',
117 u'1h9kt-7a9it-t1v8sjz6dm9jmjf', u'1h9kt-7a9it-qe8wrbyvuqs5jew']
122 For now we don't need to look up the Human objects themselves.
124 As an aside, we will look up "identifier" links to find PGP-assigned participant identifiers:
127 human_uuids = map(lambda l: l['tail_uuid'], trait_links)
128 pgpid_links = arvados.service.links().list(limit=1000,where=json.dumps({
129 "link_class": "identifier",
130 "head_uuid": human_uuids
131 })).execute()['items']
132 map(lambda l: l['name'], pgpid_links)
138 [u'hu01024B', u'hu11603C', u'hu15402B', u'hu174334', u'hu1BD549', u'hu237A50',
139 u'hu34A921', u'hu397733', u'hu414115', u'hu43860C', u'hu474789', u'hu553620',
140 u'hu56B3B6', u'hu5917F3', u'hu599905', u'hu5E55F5', u'hu602487', u'hu633787',
141 u'hu68F245', u'hu6C3F34', u'hu7260DD', u'hu7A2F1D', u'hu94040B', u'hu9E356F',
142 u'huAB8707', u'huB1FD55', u'huB4883B', u'huD09050', u'huD09534', u'huD3A569',
143 u'huDF04CC', u'huE2E371']
146 These PGP IDs let us find public profiles:
148 * "https://my.personalgenomes.org/profile/huE2E371":https://my.personalgenomes.org/profile/huE2E371
149 * "https://my.personalgenomes.org/profile/huDF04CC":https://my.personalgenomes.org/profile/huDF04CC
154 Find Collections that were provided by these Humans.
157 provenance_links = arvados.service.links().list(where=json.dumps({
158 "link_class": "provenance",
160 "tail_uuid": human_uuids
161 })).execute()['items']
162 collection_uuids = map(lambda l: l['head_uuid'], provenance_links)
164 # build map of human uuid -> PGP ID
166 for pgpid_link in pgpid_links:
167 pgpid[pgpid_link['head_uuid']] = pgpid_link['name']
169 # build map of collection uuid -> PGP ID
170 for p_link in provenance_links:
171 pgpid[p_link['head_uuid']] = pgpid[p_link['tail_uuid']]
173 # get details (e.g., list of files) of each collection
174 collections = arvados.service.collections().list(where=json.dumps({
175 "uuid": collection_uuids
176 })).execute()['items']
178 # print PGP public profile links with file locators
179 for c in collections:
181 print "https://my.personalgenomes.org/profile/%s %s %s%s" % (pgpid[c['uuid']], c['uuid'], ('' if f[0] == '.' else f[0]+'/'), f[1])
188 https://my.personalgenomes.org/profile/hu43860C a58dca7609fa84c8c38a7e926a97b2fc+302+K@qr1hi var-GS00253-DNA_A01_200_37-ASM.tsv.bz2
189 https://my.personalgenomes.org/profile/huB1FD55 ea30eb9e46eedf7f05ed6e348c2baf5d+291+K@qr1hi var-GS000010320-ASM.tsv.bz2
190 https://my.personalgenomes.org/profile/huDF04CC 4ab0df8f22f595d1747a22c476c05873+242+K@qr1hi var-GS000010427-ASM.tsv.bz2
191 https://my.personalgenomes.org/profile/hu7A2F1D 756d0ada29b376140f64e7abfe6aa0e7+242+K@qr1hi var-GS000014566-ASM.tsv.bz2
192 https://my.personalgenomes.org/profile/hu553620 7ed4e425bb1c7cc18387cbd9388181df+242+K@qr1hi var-GS000015272-ASM.tsv.bz2
193 https://my.personalgenomes.org/profile/huD09534 542112e210daff30dd3cfea4801a9f2f+242+K@qr1hi var-GS000016374-ASM.tsv.bz2
194 https://my.personalgenomes.org/profile/hu599905 33a9f3842b01ea3fdf27cc582f5ea2af+242+K@qr1hi var-GS000016015-ASM.tsv.bz2
195 https://my.personalgenomes.org/profile/hu599905 d6e2e57cd60ba5979006d0b03e45e726+81+K@qr1hi Witch_results.zip
196 https://my.personalgenomes.org/profile/hu553620 ea4f2d325592a1272f989d141a917fdd+85+K@qr1hi Devenwood_results.zip
197 https://my.personalgenomes.org/profile/hu7A2F1D 4580f6620bb15b25b18373766e14e4a7+85+K@qr1hi Innkeeper_results.zip
198 https://my.personalgenomes.org/profile/huD09534 fee37be9440b912eb90f5e779f272416+82+K@qr1hi Hallet_results.zip
201 h3. Search for a variant.
203 Look for variant rs1126809 in each of the "var" files (these contain variant calls from WGS data).
207 for c in collections:
208 if [] != filter(lambda f: re.search('^var-.*\.tsv\.bz2', f[1]), c['files']):
209 job[c['uuid']] = arvados.service.jobs().create(body={
211 'script_parameters': {'input': c['uuid'], 'pattern': "rs1126809\\b"},
212 'script_version': 'e7aeb42'
214 print "%s %s" % (pgpid[c['uuid']], job[c['uuid']]['uuid'])
221 hu43860C qr1hi-8i9sb-wyqq2eji4ehiwkq
222 huB1FD55 qr1hi-8i9sb-ep68uf0jkj3je7q
223 huDF04CC qr1hi-8i9sb-4ts4cvx6mbtcrsk
224 hu7A2F1D qr1hi-8i9sb-5lkiu9sh7vdgven
225 hu553620 qr1hi-8i9sb-nu4p6hjmziic022
226 huD09534 qr1hi-8i9sb-bt9389e9g3ff0m1
227 hu599905 qr1hi-8i9sb-ocg0i8r75luvke3
230 Monitor job progress by refreshing the Jobs page in Workbench, or by using the API:
233 map(lambda j: arvados.service.jobs().get(uuid=j['uuid']).execute()['success'], job.values())
239 [True, True, True, True, True, True, True]
242 (Unfinished jobs will appear as None, failed jobs as False, and completed jobs as True.)
244 After the jobs have completed, check output file sizes.
247 for collection_uuid in job:
248 job_uuid = job[collection_uuid]['uuid']
249 job_output = arvados.service.jobs().get(uuid=job_uuid).execute()['output']
250 output_files = arvados.service.collections().get(uuid=job_output).execute()['files']
251 print "%s %3d %s" % (pgpid[collection_uuid], output_files[0][2], job_output)
258 hu599905 80 5644238bfb2a1925d423f2c264819cfb+75+K@qr1hi
259 huD09534 80 f98f92573cf521333607910d320cc33b+75+K@qr1hi
260 huB1FD55 0 c10e07d8d90b51ee7f3b0a5855dc77c3+65+K@qr1hi
261 hu7A2F1D 80 922c4ce8d3dab3268edf8b9312cc63d4+75+K@qr1hi
262 hu553620 0 66da988f45a7ee16b6058fcbe9859d69+65+K@qr1hi
263 huDF04CC 80 bbe919451a437dde236a561d4e469ad2+75+K@qr1hi
264 hu43860C 0 45797e38410de9b9ddef2f4f0ec41a93+76+K@qr1hi
267 Thus, of the 7 WGS results available for PGP participants reporting non-melanoma skin cancer, 4 include the rs1126809 / TYR-R402Q variant.