5 title: "Writing a Crunch script"
8 This tutorial demonstrates how to write a script using Arvados Python SDK. The Arvados SDK supports access to advanced features not available using the @run-command@ wrapper, such as scheduling concurrent tasks across nodes.
10 {% include 'tutorial_expectations' %}
12 This tutorial uses @$USER@ to denote your username. Replace @$USER@ with your user name in all the following examples.
14 Start by creating a directory called @tutorial@ in your home directory. Next, create a subdirectory called @crunch_scripts@ and change to that directory:
17 <pre><code>~$ <span class="userinput">cd $HOME</span>
18 ~$ <span class="userinput">mkdir -p tutorial/crunch_scripts</span>
19 ~$ <span class="userinput">cd tutorial/crunch_scripts</span></code></pre>
22 Next, using @nano@ or your favorite Unix text editor, create a new file called @hash.py@ in the @crunch_scripts@ directory.
24 notextile. <pre>~/tutorial/crunch_scripts$ <code class="userinput">nano hash.py</code></pre>
26 Add the following code to compute the MD5 hash of each file in a collection:
28 <notextile> {% code 'tutorial_hash_script_py' as python %} </notextile>
30 Make the file executable:
32 notextile. <pre><code>~/tutorial/crunch_scripts$ <span class="userinput">chmod +x hash.py</span></code></pre>
34 Next, create a submission job record. This describes a specific invocation of your script:
37 <pre><code>~/tutorial/crunch_scripts$ <span class="userinput">cat >~/the_job <<EOF
41 "script_version":"$HOME/tutorial",
43 "input":"c1bad4b39ca5a924e481008009d94e32+210"
50 You can now run your script on your local workstation or VM using @arv-crunch-job@:
53 <pre><code>~/tutorial/crunch_scripts</span>$ <span class="userinput">arv-crunch-job --job "$(cat ~/the_job)"</span>
54 2014-08-06_15:16:22 qr1hi-8i9sb-qyrat80ef927lam 14473 check slurm allocation
55 2014-08-06_15:16:22 qr1hi-8i9sb-qyrat80ef927lam 14473 node localhost - 1 slots
56 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 start
57 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 script hash.py
58 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 script_version $HOME/tutorial
59 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 script_parameters {"input":"c1bad4b39ca5a924e481008009d94e32+210"}
60 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 runtime_constraints {"max_tasks_per_node":0}
61 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 start level 0
62 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 status: 0 done, 0 running, 1 todo
63 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 0 job_task qr1hi-ot0gb-lptn85mwkrn9pqo
64 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 0 child 14478 started on localhost.1
65 2014-08-06_15:16:23 qr1hi-8i9sb-qyrat80ef927lam 14473 status: 0 done, 1 running, 0 todo
66 2014-08-06_15:16:24 qr1hi-8i9sb-qyrat80ef927lam 14473 0 stderr crunchstat: Running [stdbuf --output=0 --error=0 /home/$USER/tutorial/crunch_scripts/hash.py]
67 2014-08-06_15:16:24 qr1hi-8i9sb-qyrat80ef927lam 14473 0 child 14478 on localhost.1 exit 0 signal 0 success=true
68 2014-08-06_15:16:24 qr1hi-8i9sb-qyrat80ef927lam 14473 0 success in 1 seconds
69 2014-08-06_15:16:24 qr1hi-8i9sb-qyrat80ef927lam 14473 0 output
70 2014-08-06_15:16:25 qr1hi-8i9sb-qyrat80ef927lam 14473 wait for last 0 children to finish
71 2014-08-06_15:16:25 qr1hi-8i9sb-qyrat80ef927lam 14473 status: 1 done, 0 running, 1 todo
72 2014-08-06_15:16:25 qr1hi-8i9sb-qyrat80ef927lam 14473 start level 1
73 2014-08-06_15:16:25 qr1hi-8i9sb-qyrat80ef927lam 14473 status: 1 done, 0 running, 1 todo
74 2014-08-06_15:16:25 qr1hi-8i9sb-qyrat80ef927lam 14473 1 job_task qr1hi-ot0gb-e3obm0lv6k6p56a
75 2014-08-06_15:16:25 qr1hi-8i9sb-qyrat80ef927lam 14473 1 child 14504 started on localhost.1
76 2014-08-06_15:16:25 qr1hi-8i9sb-qyrat80ef927lam 14473 status: 1 done, 1 running, 0 todo
77 2014-08-06_15:16:26 qr1hi-8i9sb-qyrat80ef927lam 14473 1 stderr crunchstat: Running [stdbuf --output=0 --error=0 /home/$USER/tutorial/crunch_scripts/hash.py]
78 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 1 child 14504 on localhost.1 exit 0 signal 0 success=true
79 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 1 success in 10 seconds
80 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 1 output 8c20281b9840f624a486e4f1a78a1da8+105+A234be74ceb5ea31db6e11b6be26f3eb76d288ad0@54987018
81 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 wait for last 0 children to finish
82 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 status: 2 done, 0 running, 0 todo
83 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 release job allocation
84 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 Freeze not implemented
85 2014-08-06_15:16:35 qr1hi-8i9sb-qyrat80ef927lam 14473 collate
86 2014-08-06_15:16:36 qr1hi-8i9sb-qyrat80ef927lam 14473 collated output manifest text to send to API server is 105 bytes with access tokens
87 2014-08-06_15:16:36 qr1hi-8i9sb-qyrat80ef927lam 14473 output hash c1b44b6dc41ef334cf1136033ca950e6+54
88 2014-08-06_15:16:37 qr1hi-8i9sb-qyrat80ef927lam 14473 finish
89 2014-08-06_15:16:38 qr1hi-8i9sb-qyrat80ef927lam 14473 log manifest is 7fe8cf1d45d438a3ca3ac4a184b7aff4+83
93 Although the job runs locally, the output of the job has been saved to Keep, the Arvados file store. The "output hash" line (third from the bottom) provides the portable data hash of the Arvados collection where the script's output has been saved. Copy the output hash and use @arv-ls@ to list the contents of your output collection, and @arv-get@ to download it to the current directory:
96 <pre><code>~/tutorial/crunch_scripts$ <span class="userinput">arv-ls c1b44b6dc41ef334cf1136033ca950e6+54</span>
98 ~/tutorial/crunch_scripts$ <span class="userinput">arv-get c1b44b6dc41ef334cf1136033ca950e6+54/ .</span>
100 ~/tutorial/crunch_scripts$ <span class="userinput">cat md5sum.txt</span>
101 44b8ae3fde7a8a88d2f7ebd237625b4f c1bad4b39ca5a924e481008009d94e32+210/var-GS000016015-ASM.tsv.bz2
105 Running locally is convenient for development and debugging, as it permits a fast iterative development cycle. Your job run is also recorded by Arvados, and will appear in the *Recent jobs and pipelines* panel on the "Workbench Dashboard":{{site.arvados_workbench_host}}. This provides limited provenance, by recording the input parameters, the execution log, and the output. However, running locally does not allow you to scale out to multiple nodes, and does not store the complete system snapshot required to achieve reproducibility; to do that you need to "submit a job to the Arvados cluster":{{site.baseurl}}/user/tutorials/tutorial-submit-job.html.