Reflect the new name and url for the public evaluation and trial instance,
[arvados.git] / doc / user / topics / tutorial-trait-search.html.textile.liquid
1 ---
2 layout: default
3 navsection: userguide
4 title: "Querying the Metadata Database"
5 ...
6 {% comment %}
7 Copyright (C) The Arvados Authors. All rights reserved.
8
9 SPDX-License-Identifier: CC-BY-SA-3.0
10 {% endcomment %}
11
12 {% include 'notebox_begin_warning' %}
13 The humans, specimens and traits tables are deprecated and will be removed in a future release.  The recommended way to store and search on user-defined metadata is using the "properties" field of Arvados resources.
14 {% include 'notebox_end' %}
15
16 This tutorial introduces the Arvados Metadata Database.  The Metadata Database stores information about files in Keep.  This example will use the Python SDK to find public WGS (Whole Genome Sequencing) data for people who have reported a certain medical condition.
17
18 {% include 'tutorial_expectations' %}
19
20 In the tutorial examples, three angle brackets (>>>) will be used to denote code to enter at the interactive Python prompt.
21
22 Start by running Python.
23
24 <notextile>
25 <pre><code>~$ <span class="userinput">python</span>
26 Python 2.7.3 (default, Jan  2 2013, 13:56:14)
27 [GCC 4.7.2] on linux2
28 Type "help", "copyright", "credits" or "license" for more information.
29 &gt;&gt;&gt;
30 </code></pre>
31 </notextile>
32
33 If everything is set up correctly, you will be able to import the arvados SDK.
34
35 notextile. <pre><code>&gt;&gt;&gt; <span class="userinput">import arvados</span></pre></code>
36
37 This tutorial will also use the regular expression (re) python module:
38
39 <notextile>
40 <pre><code>&gt;&gt;&gt; <span class="userinput">import re</span>
41 </code></pre>
42 </notextile>
43
44 h2. Finding traits
45
46 notextile. <pre><code>&gt;&gt;&gt; <span class="userinput">all_traits = arvados.api().traits().list(limit=1000).execute()</span></code></pre>
47
48 * @arvados.api()@ gets an object that provides access to the Arvados API server
49 * @.traits()@ gets an object that provides access to the "traits" resource on the Arvados API server
50 * @.list(limit=1000)@ constructs a query to list all elements of the "traits" resource, with a limit of 1000 entries returned
51 * @.execute()@ executes the query and returns the result, which we assign to "all_traits"
52
53 notextile. <pre><code>&gt;&gt;&gt; <span class="userinput">cancer_traits = filter(lambda t: re.search('cancer', t['name']), all_traits['items'])</span></code></pre>
54
55 * @lambda t: re.search('cancer', t['name'])@ is an inline function that takes a parameter @t@ and uses a simple regular expression to test if @t['name']@ contains the substring 'cancer'
56 * @all_traits['items']@ is the input sequence of traits
57 * @filter@ tests each element @t@ and constructs a new sequence consisting only of the elements that pass the filter
58 * @cancer_traits@ gets the result of @filter@
59
60 <notextile>
61 <pre><code>&gt;&gt;&gt; <span class="userinput">for t in cancer_traits: print(t['uuid'], t['name'])</span>
62 ...
63 qr1hi-q1cn2-8q57g2diohwnzm0 Cervical cancer
64 qr1hi-q1cn2-vqp4243janpjbyj Breast cancer
65 qr1hi-q1cn2-v6usijujcpwqrn1 Non-melanoma skin cancer
66 ...
67 </code></pre>
68 </notextile>
69
70 In this tutorial wil will use "Non-melanoma skin cancer" trait with uuid @qr1hi-q1cn2-v6usijujcpwqrn1@.
71
72 notextile. <pre><code>&gt;&gt;&gt; <span class="userinput">non_melanoma_cancer = 'qr1hi-q1cn2-v6usijujcpwqrn1'</code></pre>
73
74 h2. Finding humans with the selected trait
75
76 We query the "links" resource to find humans that report the selected trait.  Links are directional connections between Arvados data items, for example, from a human to their reported traits.
77
78 <notextile>
79 <pre><code>&gt;&gt;&gt; <span class="userinput">trait_filter = [
80     ['link_class', '=', 'human_trait'],
81     ['tail_uuid', 'is_a', 'arvados#human'],
82     ['head_uuid', '=', non_melanoma_cancer],
83   ]
84 </code></pre>
85 </notextile>
86
87 * @['link_class', '=', 'human_trait']@ filters on links that connect phenotype traits to individuals in the database.
88 * @['tail_uuid', 'is_a', 'arvados#human']@ filters that the "tail" must be a "human" database object.
89 * @['head_uuid', '=', non_melanoma_cancer]@ filters that the "head" of the link must connect to the "trait" database object non_melanoma_cancer .
90
91 The query will return links that match all three conditions.
92
93 <notextile>
94 <pre><code>&gt;&gt;&gt; <span class="userinput">trait_links = arvados.api().links().list(limit=1000, filters=trait_filter).execute()</span>
95 </code></pre>
96 </notextile>
97
98 * @arvados.api()@ gets an object that provides access to the Arvados API server
99 * @.links()@ gets an object that provides access to the "links" resource on the Arvados API server
100 * @.list(limit=1000, filters=trait_filter)@ constructs a query to elements of the "links" resource that match the criteria discussed above, with a limit of 1000 entries returned
101 * @.execute()@ executes the query and returns the result, which we assign to "trait_links"
102
103 <notextile>
104 <pre><code>&gt;&gt;&gt; <span class="userinput">human_uuids = map(lambda l: l['tail_uuid'], trait_links['items'])</span>
105 &gt;&gt;&gt; <span class="userinput">human_uuids</span>
106 [u'1h9kt-7a9it-c0uqa4kcdh29wdf', u'1h9kt-7a9it-x4tru6mn40hc6ah',
107 u'1h9kt-7a9it-yqb8m5s9cpy88i8', u'1h9kt-7a9it-46sm75w200ngwny',
108 u'1h9kt-7a9it-gx85a4tdkpzsg3w', u'1h9kt-7a9it-8cvlaa8909lgeo9',
109 u'1h9kt-7a9it-as37qum2pq8vizb', u'1h9kt-7a9it-14fph66z2baqxb9',
110 u'1h9kt-7a9it-e9zc7i4crmw3v69', u'1h9kt-7a9it-np7f35hlijlxdmt',
111 u'1h9kt-7a9it-j9hqyjwbvo9cojn', u'1h9kt-7a9it-lqxdtm1gynmsv13',
112 u'1h9kt-7a9it-zkhhxjfg2o22ywq', u'1h9kt-7a9it-nsjoxqd33lzldw9',
113 u'1h9kt-7a9it-ytect4smzcgd4kg', u'1h9kt-7a9it-y6tl353b3jc4tos',
114 u'1h9kt-7a9it-98f8qave4f8vbs5', u'1h9kt-7a9it-gd72sh15q0p4wq3',
115 u'1h9kt-7a9it-zlx25dscak94q9h', u'1h9kt-7a9it-8gronw4rbgmim01',
116 u'1h9kt-7a9it-wclfkjcb23tr5es', u'1h9kt-7a9it-rvp2qe7szfz4dy6',
117 u'1h9kt-7a9it-50iffhmpzsktwjm', u'1h9kt-7a9it-ul412id5y31a5o8',
118 u'1h9kt-7a9it-732kwkfzylmt4ik', u'1h9kt-7a9it-v9zqxegpblsbtai',
119 u'1h9kt-7a9it-kmaraqduit1v5wd', u'1h9kt-7a9it-t1nwtlo1hru5vvq',
120 u'1h9kt-7a9it-q3w6j9od4ibpoyl', u'1h9kt-7a9it-qz8vzkuuz97ezwv',
121 u'1h9kt-7a9it-t1v8sjz6dm9jmjf', u'1h9kt-7a9it-qe8wrbyvuqs5jew']
122 </code></pre>
123 </notextile>
124
125 * @lambda l: l['tail_uuid']@ is an inline function that returns the 'tail_uuid' attribute of 'l'
126 * @trait_links['items']@ is the input set from the query
127 * @map@ converts each item in a sequence into a different item using the embedded function, in this case to produce a sequence of uuids which refer to humans that have the specified trait.
128
129 h2. Find Personal Genome Project identifiers from Arvados UUIDs
130
131 <notextile>
132 <pre><code>&gt;&gt;&gt; <span class="userinput">human_filters = [
133     ["link_class", "=", "identifier"],
134     ["head_uuid", "in", human_uuids]
135   ]</span>
136 &gt;&gt;&gt; <span class="userinput">pgpid_links = arvados.api('v1').links().list(limit=1000, filters=human_filters).execute()</span>
137 &gt;&gt;&gt; <span class="userinput">map(lambda l: l['name'], pgpid_links['items'])</span>
138 [u'hu01024B', u'hu11603C', u'hu15402B', u'hu174334', u'hu1BD549', u'hu237A50',
139  u'hu34A921', u'hu397733', u'hu414115', u'hu43860C', u'hu474789', u'hu553620',
140  u'hu56B3B6', u'hu5917F3', u'hu599905', u'hu5E55F5', u'hu602487', u'hu633787',
141  u'hu68F245', u'hu6C3F34', u'hu7260DD', u'hu7A2F1D', u'hu94040B', u'hu9E356F',
142  u'huAB8707', u'huB1FD55', u'huB4883B', u'huD09050', u'huD09534', u'huD3A569',
143  u'huDF04CC', u'huE2E371']
144 </code></pre>
145 </notextile>
146
147 These PGP IDs let us find public profiles, for example:
148
149 * "https://my.pgp-hms.org/profile/huE2E371":https://my.pgp-hms.org/profile/huE2E371
150 * "https://my.pgp-hms.org/profile/huDF04CC":https://my.pgp-hms.org/profile/huDF04CC
151 * ...
152
153 h2. Find genomic data from specific humans
154
155 Now we want to find collections in Keep that were provided by these humans.  We search the "links" resource for "provenance" links that point to entries in the list of humans with the non-melanoma skin cancer trait:
156
157 <notextile>
158 <pre><code>&gt;&gt;&gt; <span class="userinput">provenance_links = arvados.api().links().list(limit=1000, filters=[
159     ["link_class", "=", "provenance"],
160     ["name", "=", "provided"],
161     ["tail_uuid", "in", human_uuids]
162   ]).execute()
163 collection_uuids = map(lambda l: l['head_uuid'], provenance_links['items'])
164
165 # build map of human uuid -> PGP ID
166 pgpid = {}
167 for pgpid_link in pgpid_links['items']:
168   pgpid[pgpid_link['head_uuid']] = pgpid_link['name']
169
170 # build map of collection uuid -> PGP ID
171 for p_link in provenance_links['items']:
172   pgpid[p_link['head_uuid']] = pgpid[p_link['tail_uuid']]
173
174 # get details (e.g., list of files) of each collection
175 collections = arvados.api('v1').collections().list(filters=[
176     ["uuid", "in", collection_uuids]
177   ]).execute()
178
179 # print PGP public profile links with file locators
180 for c in collections['items']:
181   for f in c['files']:
182     print "https://my.pgp-hms.org/profile/%s %s %s%s" % (pgpid[c['uuid']], c['uuid'], ('' if f[0] == '.' else f[0]+'/'), f[1])
183 </span>
184 https://my.pgp-hms.org/profile/hu43860C a58dca7609fa84c8c38a7e926a97b2fc var-GS00253-DNA_A01_200_37-ASM.tsv.bz2
185 https://my.pgp-hms.org/profile/huB1FD55 ea30eb9e46eedf7f05ed6e348c2baf5d var-GS000010320-ASM.tsv.bz2
186 https://my.pgp-hms.org/profile/huDF04CC 4ab0df8f22f595d1747a22c476c05873 var-GS000010427-ASM.tsv.bz2
187 https://my.pgp-hms.org/profile/hu7A2F1D 756d0ada29b376140f64e7abfe6aa0e7 var-GS000014566-ASM.tsv.bz2
188 https://my.pgp-hms.org/profile/hu553620 7ed4e425bb1c7cc18387cbd9388181df var-GS000015272-ASM.tsv.bz2
189 https://my.pgp-hms.org/profile/huD09534 542112e210daff30dd3cfea4801a9f2f var-GS000016374-ASM.tsv.bz2
190 https://my.pgp-hms.org/profile/hu599905 33a9f3842b01ea3fdf27cc582f5ea2af var-GS000016015-ASM.tsv.bz2
191 https://my.pgp-hms.org/profile/hu43860C a58dca7609fa84c8c38a7e926a97b2fc+302 var-GS00253-DNA_A01_200_37-ASM.tsv.bz2
192 https://my.pgp-hms.org/profile/huB1FD55 ea30eb9e46eedf7f05ed6e348c2baf5d+291 var-GS000010320-ASM.tsv.bz2
193 https://my.pgp-hms.org/profile/huDF04CC 4ab0df8f22f595d1747a22c476c05873+242 var-GS000010427-ASM.tsv.bz2
194 https://my.pgp-hms.org/profile/hu7A2F1D 756d0ada29b376140f64e7abfe6aa0e7+242 var-GS000014566-ASM.tsv.bz2
195 https://my.pgp-hms.org/profile/hu553620 7ed4e425bb1c7cc18387cbd9388181df+242 var-GS000015272-ASM.tsv.bz2
196 https://my.pgp-hms.org/profile/huD09534 542112e210daff30dd3cfea4801a9f2f+242 var-GS000016374-ASM.tsv.bz2
197 https://my.pgp-hms.org/profile/hu599905 33a9f3842b01ea3fdf27cc582f5ea2af+242 var-GS000016015-ASM.tsv.bz2
198 https://my.pgp-hms.org/profile/hu599905 d6e2e57cd60ba5979006d0b03e45e726+81 Witch_results.zip
199 https://my.pgp-hms.org/profile/hu553620 ea4f2d325592a1272f989d141a917fdd+85 Devenwood_results.zip
200 https://my.pgp-hms.org/profile/hu7A2F1D 4580f6620bb15b25b18373766e14e4a7+85 Innkeeper_results.zip
201 https://my.pgp-hms.org/profile/huD09534 fee37be9440b912eb90f5e779f272416+82 Hallet_results.zip
202 </code></pre>
203 </notextile>
204
205 h3. Search for a variant
206
207 Now we will use crunch to issue a 'grep' job to look for variant rs1126809 in each of the "var-" files (these contain variant calls from WGS data).
208
209 <notextile>
210 <pre><code>&gt;&gt;&gt; <span class="userinput">job = {}
211 for c in collections['items']:
212   if [] != filter(lambda f: re.search('^var-.*\.tsv\.bz2', f[1]), c['files']):
213     job[c['uuid']] = arvados.api('v1').jobs().create(body={
214       'script': 'grep',
215       'script_parameters': {'input': c['uuid'], 'pattern': "rs1126809\\b"},
216       'script_version': 'e7aeb42'
217     }).execute()
218     print "%s %s" % (pgpid[c['uuid']], job[c['uuid']]['uuid'])
219 </span>
220 hu43860C qr1hi-8i9sb-wbf3uthbhkcy8ji
221 huB1FD55 qr1hi-8i9sb-scklkiy8dc27dab
222 huDF04CC qr1hi-8i9sb-pg0w4rfrwfd9srg
223 hu7A2F1D qr1hi-8i9sb-n7u0u0rj8b47168
224 hu553620 qr1hi-8i9sb-k7gst7vyhg20pt1
225 huD09534 qr1hi-8i9sb-4w65pm48123fte5
226 hu599905 qr1hi-8i9sb-wmwa5b5r3eghnev
227 hu43860C qr1hi-8i9sb-j1mngmakdh8iv9o
228 huB1FD55 qr1hi-8i9sb-4j6ehiatcolaoxb
229 huDF04CC qr1hi-8i9sb-n6lcmcr3lowqr5u
230 hu7A2F1D qr1hi-8i9sb-0hwsdtojfcxjo40
231 hu553620 qr1hi-8i9sb-cvvqzqea7jhwb0i
232 huD09534 qr1hi-8i9sb-d0y0qtzuwzbrjj0
233 hu599905 qr1hi-8i9sb-i9ec9g8d7rt70xg
234 </code></pre>
235 </notextile>
236
237
238 Monitor job progress by refreshing the Jobs page in Workbench, or by using the API:
239
240 <notextile>
241 <pre><code>&gt;&gt;&gt; <span class="userinput">map(lambda j: arvados.api('v1').jobs().get(uuid=j['uuid']).execute()['success'], job.values())
242 [None, True, None, None, None, None, None, None, None, None, None, None, None, None]
243 </code></pre>
244 </notextile>
245
246 Unfinished jobs will appear as None, failed jobs as False, and completed jobs as True.
247
248 After the jobs have completed, check output file sizes.
249
250 <notextile>
251 <pre><code>&gt;&gt;&gt; <span class="userinput">for collection_uuid in job:
252   job_uuid = job[collection_uuid]['uuid']
253   job_output = arvados.api('v1').jobs().get(uuid=job_uuid).execute()['output']
254   output_files = arvados.api('v1').collections().get(uuid=job_output).execute()['files']
255   # Test the output size.  If greater than zero, that means 'grep' found the variant
256   if output_files[0][2] > 0:
257     print("%s has variant rs1126809" % (pgpid[collection_uuid]))
258   else:
259     print("%s does not have variant rs1126809" % (pgpid[collection_uuid]))
260 </span>
261 hu553620 does not have variant rs1126809
262 hu43860C does not have variant rs1126809
263 hu599905 has variant rs1126809
264 huD09534 has variant rs1126809
265 hu553620 does not have variant rs1126809
266 huB1FD55 does not have variant rs1126809
267 huDF04CC has variant rs1126809
268 hu7A2F1D has variant rs1126809
269 hu7A2F1D has variant rs1126809
270 hu599905 has variant rs1126809
271 huDF04CC has variant rs1126809
272 huB1FD55 does not have variant rs1126809
273 huD09534 has variant rs1126809
274 hu43860C does not have variant rs1126809
275 </code></pre>
276 </notextile>
277
278 Thus, of the 14 WGS results available for PGP participants reporting non-melanoma skin cancer, 8 include the rs1126809 variant.