Merge branch '11369-cwl-crunch2-capacity' refs #11369
[arvados.git] / sdk / cwl / arvados_cwl / arvjob.py
1 import logging
2 import re
3 import copy
4 import json
5 import time
6
7 from cwltool.process import get_feature, shortname, UnsupportedRequirement
8 from cwltool.errors import WorkflowException
9 from cwltool.draft2tool import revmap_file, CommandLineTool
10 from cwltool.load_tool import fetch_document
11 from cwltool.builder import Builder
12 from cwltool.pathmapper import adjustFileObjs, adjustDirObjs
13
14 from schema_salad.sourceline import SourceLine
15
16 import ruamel.yaml as yaml
17
18 import arvados.collection
19
20 from .arvdocker import arv_docker_get_image
21 from .runner import Runner, arvados_jobs_image, packed_workflow, upload_workflow_collection, trim_anonymous_location
22 from .pathmapper import VwdPathMapper, trim_listing
23 from .perf import Perf
24 from . import done
25 from ._version import __version__
26
27 logger = logging.getLogger('arvados.cwl-runner')
28 metrics = logging.getLogger('arvados.cwl-runner.metrics')
29
30 crunchrunner_re = re.compile(r"^\S+ \S+ \d+ \d+ stderr \S+ \S+ crunchrunner: \$\(task\.(tmpdir|outdir|keep)\)=(.*)")
31
32 crunchrunner_git_commit = 'a3f2cb186e437bfce0031b024b2157b73ed2717d'
33
34 class ArvadosJob(object):
35     """Submit and manage a Crunch job for executing a CWL CommandLineTool."""
36
37     def __init__(self, runner):
38         self.arvrunner = runner
39         self.running = False
40         self.uuid = None
41
42     def run(self, dry_run=False, pull_image=True, **kwargs):
43         script_parameters = {
44             "command": self.command_line
45         }
46         runtime_constraints = {}
47
48         with Perf(metrics, "generatefiles %s" % self.name):
49             if self.generatefiles["listing"]:
50                 vwd = arvados.collection.Collection(api_client=self.arvrunner.api,
51                                                     keep_client=self.arvrunner.keep_client,
52                                                     num_retries=self.arvrunner.num_retries)
53                 script_parameters["task.vwd"] = {}
54                 generatemapper = VwdPathMapper([self.generatefiles], "", "",
55                                                separateDirs=False)
56
57                 with Perf(metrics, "createfiles %s" % self.name):
58                     for f, p in generatemapper.items():
59                         if p.type == "CreateFile":
60                             with vwd.open(p.target, "w") as n:
61                                 n.write(p.resolved.encode("utf-8"))
62
63                 if vwd:
64                     with Perf(metrics, "generatefiles.save_new %s" % self.name):
65                         vwd.save_new()
66
67                 for f, p in generatemapper.items():
68                     if p.type == "File":
69                         script_parameters["task.vwd"][p.target] = p.resolved
70                     if p.type == "CreateFile":
71                         script_parameters["task.vwd"][p.target] = "$(task.keep)/%s/%s" % (vwd.portable_data_hash(), p.target)
72
73         script_parameters["task.env"] = {"TMPDIR": self.tmpdir, "HOME": self.outdir}
74         if self.environment:
75             script_parameters["task.env"].update(self.environment)
76
77         if self.stdin:
78             script_parameters["task.stdin"] = self.stdin
79
80         if self.stdout:
81             script_parameters["task.stdout"] = self.stdout
82
83         if self.stderr:
84             script_parameters["task.stderr"] = self.stderr
85
86         if self.successCodes:
87             script_parameters["task.successCodes"] = self.successCodes
88         if self.temporaryFailCodes:
89             script_parameters["task.temporaryFailCodes"] = self.temporaryFailCodes
90         if self.permanentFailCodes:
91             script_parameters["task.permanentFailCodes"] = self.permanentFailCodes
92
93         with Perf(metrics, "arv_docker_get_image %s" % self.name):
94             (docker_req, docker_is_req) = get_feature(self, "DockerRequirement")
95             if docker_req and kwargs.get("use_container") is not False:
96                 if docker_req.get("dockerOutputDirectory"):
97                     raise SourceLine(docker_req, "dockerOutputDirectory", UnsupportedRequirement).makeError(
98                         "Option 'dockerOutputDirectory' of DockerRequirement not supported.")
99                 runtime_constraints["docker_image"] = arv_docker_get_image(self.arvrunner.api, docker_req, pull_image, self.arvrunner.project_uuid)
100             else:
101                 runtime_constraints["docker_image"] = "arvados/jobs"
102
103         resources = self.builder.resources
104         if resources is not None:
105             runtime_constraints["min_cores_per_node"] = resources.get("cores", 1)
106             runtime_constraints["min_ram_mb_per_node"] = resources.get("ram")
107             runtime_constraints["min_scratch_mb_per_node"] = resources.get("tmpdirSize", 0) + resources.get("outdirSize", 0)
108
109         runtime_req, _ = get_feature(self, "http://arvados.org/cwl#RuntimeConstraints")
110         if runtime_req:
111             if "keep_cache" in runtime_req:
112                 runtime_constraints["keep_cache_mb_per_task"] = runtime_req["keep_cache"]
113             if "outputDirType" in runtime_req:
114                 if runtime_req["outputDirType"] == "local_output_dir":
115                     script_parameters["task.keepTmpOutput"] = False
116                 elif runtime_req["outputDirType"] == "keep_output_dir":
117                     script_parameters["task.keepTmpOutput"] = True
118
119         filters = [["repository", "=", "arvados"],
120                    ["script", "=", "crunchrunner"],
121                    ["script_version", "in git", crunchrunner_git_commit]]
122         if not self.arvrunner.ignore_docker_for_reuse:
123             filters.append(["docker_image_locator", "in docker", runtime_constraints["docker_image"]])
124
125         try:
126             with Perf(metrics, "create %s" % self.name):
127                 response = self.arvrunner.api.jobs().create(
128                     body={
129                         "owner_uuid": self.arvrunner.project_uuid,
130                         "script": "crunchrunner",
131                         "repository": "arvados",
132                         "script_version": "master",
133                         "minimum_script_version": crunchrunner_git_commit,
134                         "script_parameters": {"tasks": [script_parameters]},
135                         "runtime_constraints": runtime_constraints
136                     },
137                     filters=filters,
138                     find_or_create=kwargs.get("enable_reuse", True)
139                 ).execute(num_retries=self.arvrunner.num_retries)
140
141             self.arvrunner.processes[response["uuid"]] = self
142
143             self.update_pipeline_component(response)
144
145             if response["state"] == "Complete":
146                 logger.info("%s reused job %s", self.arvrunner.label(self), response["uuid"])
147                 with Perf(metrics, "done %s" % self.name):
148                     self.done(response)
149             else:
150                 logger.info("%s %s is %s", self.arvrunner.label(self), response["uuid"], response["state"])
151         except Exception as e:
152             logger.exception("%s error" % (self.arvrunner.label(self)))
153             self.output_callback({}, "permanentFail")
154
155     def update_pipeline_component(self, record):
156         if self.arvrunner.pipeline:
157             self.arvrunner.pipeline["components"][self.name] = {"job": record}
158             with Perf(metrics, "update_pipeline_component %s" % self.name):
159                 self.arvrunner.pipeline = self.arvrunner.api.pipeline_instances().update(uuid=self.arvrunner.pipeline["uuid"],
160                                                                                  body={
161                                                                                     "components": self.arvrunner.pipeline["components"]
162                                                                                  }).execute(num_retries=self.arvrunner.num_retries)
163         if self.arvrunner.uuid:
164             try:
165                 job = self.arvrunner.api.jobs().get(uuid=self.arvrunner.uuid).execute()
166                 if job:
167                     components = job["components"]
168                     components[self.name] = record["uuid"]
169                     self.arvrunner.api.jobs().update(uuid=self.arvrunner.uuid,
170                         body={
171                             "components": components
172                         }).execute(num_retries=self.arvrunner.num_retries)
173             except Exception as e:
174                 logger.info("Error adding to components: %s", e)
175
176     def done(self, record):
177         try:
178             self.update_pipeline_component(record)
179         except:
180             pass
181
182         try:
183             if record["state"] == "Complete":
184                 processStatus = "success"
185             else:
186                 processStatus = "permanentFail"
187
188             outputs = {}
189             try:
190                 if record["output"]:
191                     with Perf(metrics, "inspect log %s" % self.name):
192                         logc = arvados.collection.CollectionReader(record["log"],
193                                                                    api_client=self.arvrunner.api,
194                                                                    keep_client=self.arvrunner.keep_client,
195                                                                    num_retries=self.arvrunner.num_retries)
196                         log = logc.open(logc.keys()[0])
197                         dirs = {}
198                         tmpdir = None
199                         outdir = None
200                         keepdir = None
201                         for l in log:
202                             # Determine the tmpdir, outdir and keepdir paths from
203                             # the job run.  Unfortunately, we can't take the first
204                             # values we find (which are expected to be near the
205                             # top) and stop scanning because if the node fails and
206                             # the job restarts on a different node these values
207                             # will different runs, and we need to know about the
208                             # final run that actually produced output.
209                             g = crunchrunner_re.match(l)
210                             if g:
211                                 dirs[g.group(1)] = g.group(2)
212
213                     if processStatus == "permanentFail":
214                         done.logtail(logc, logger, "%s error log:" % self.arvrunner.label(self))
215
216                     with Perf(metrics, "output collection %s" % self.name):
217                         outputs = done.done(self, record, dirs["tmpdir"],
218                                             dirs["outdir"], dirs["keep"])
219             except WorkflowException as e:
220                 logger.error("%s unable to collect output from %s:\n%s",
221                              self.arvrunner.label(self), record["output"], e, exc_info=(e if self.arvrunner.debug else False))
222                 processStatus = "permanentFail"
223             except Exception as e:
224                 logger.exception("Got unknown exception while collecting output for job %s:", self.name)
225                 processStatus = "permanentFail"
226
227             # Note: Currently, on error output_callback is expecting an empty dict,
228             # anything else will fail.
229             if not isinstance(outputs, dict):
230                 logger.error("Unexpected output type %s '%s'", type(outputs), outputs)
231                 outputs = {}
232                 processStatus = "permanentFail"
233         finally:
234             self.output_callback(outputs, processStatus)
235             if record["uuid"] in self.arvrunner.processes:
236                 del self.arvrunner.processes[record["uuid"]]
237
238 class RunnerJob(Runner):
239     """Submit and manage a Crunch job that runs crunch_scripts/cwl-runner."""
240
241     def arvados_job_spec(self, dry_run=False, pull_image=True, **kwargs):
242         """Create an Arvados job specification for this workflow.
243
244         The returned dict can be used to create a job (i.e., passed as
245         the +body+ argument to jobs().create()), or as a component in
246         a pipeline template or pipeline instance.
247         """
248
249         if self.tool.tool["id"].startswith("keep:"):
250             self.job_order["cwl:tool"] = self.tool.tool["id"][5:]
251         else:
252             packed = packed_workflow(self.arvrunner, self.tool)
253             wf_pdh = upload_workflow_collection(self.arvrunner, self.name, packed)
254             self.job_order["cwl:tool"] = "%s/workflow.cwl#main" % wf_pdh
255
256         adjustDirObjs(self.job_order, trim_listing)
257         adjustFileObjs(self.job_order, trim_anonymous_location)
258         adjustDirObjs(self.job_order, trim_anonymous_location)
259
260         if self.output_name:
261             self.job_order["arv:output_name"] = self.output_name
262
263         if self.output_tags:
264             self.job_order["arv:output_tags"] = self.output_tags
265
266         self.job_order["arv:enable_reuse"] = self.enable_reuse
267
268         if self.on_error:
269             self.job_order["arv:on_error"] = self.on_error
270
271         return {
272             "script": "cwl-runner",
273             "script_version": "master",
274             "minimum_script_version": "570509ab4d2ef93d870fd2b1f2eab178afb1bad9",
275             "repository": "arvados",
276             "script_parameters": self.job_order,
277             "runtime_constraints": {
278                 "docker_image": arvados_jobs_image(self.arvrunner, self.jobs_image),
279                 "min_ram_mb_per_node": self.submit_runner_ram
280             }
281         }
282
283     def run(self, *args, **kwargs):
284         job_spec = self.arvados_job_spec(*args, **kwargs)
285
286         job_spec.setdefault("owner_uuid", self.arvrunner.project_uuid)
287
288         job = self.arvrunner.api.jobs().create(
289             body=job_spec,
290             find_or_create=self.enable_reuse
291         ).execute(num_retries=self.arvrunner.num_retries)
292
293         for k,v in job_spec["script_parameters"].items():
294             if v is False or v is None or isinstance(v, dict):
295                 job_spec["script_parameters"][k] = {"value": v}
296
297         del job_spec["owner_uuid"]
298         job_spec["job"] = job
299         self.arvrunner.pipeline = self.arvrunner.api.pipeline_instances().create(
300             body={
301                 "owner_uuid": self.arvrunner.project_uuid,
302                 "name": self.name,
303                 "components": {"cwl-runner": job_spec },
304                 "state": "RunningOnServer"}).execute(num_retries=self.arvrunner.num_retries)
305         logger.info("Created pipeline %s", self.arvrunner.pipeline["uuid"])
306
307         if kwargs.get("wait") is False:
308             self.uuid = self.arvrunner.pipeline["uuid"]
309             return
310
311         self.uuid = job["uuid"]
312         self.arvrunner.processes[self.uuid] = self
313
314         if job["state"] in ("Complete", "Failed", "Cancelled"):
315             self.done(job)
316
317
318 class RunnerTemplate(object):
319     """An Arvados pipeline template that invokes a CWL workflow."""
320
321     type_to_dataclass = {
322         'boolean': 'boolean',
323         'File': 'File',
324         'Directory': 'Collection',
325         'float': 'number',
326         'int': 'number',
327         'string': 'text',
328     }
329
330     def __init__(self, runner, tool, job_order, enable_reuse, uuid,
331                  submit_runner_ram=0, name=None):
332         self.runner = runner
333         self.tool = tool
334         self.job = RunnerJob(
335             runner=runner,
336             tool=tool,
337             job_order=job_order,
338             enable_reuse=enable_reuse,
339             output_name=None,
340             output_tags=None,
341             submit_runner_ram=submit_runner_ram,
342             name=name)
343         self.uuid = uuid
344
345     def pipeline_component_spec(self):
346         """Return a component that Workbench and a-r-p-i will understand.
347
348         Specifically, translate CWL input specs to Arvados pipeline
349         format, like {"dataclass":"File","value":"xyz"}.
350         """
351
352         spec = self.job.arvados_job_spec()
353
354         # Most of the component spec is exactly the same as the job
355         # spec (script, script_version, etc.).
356         # spec['script_parameters'] isn't right, though. A component
357         # spec's script_parameters hash is a translation of
358         # self.tool.tool['inputs'] with defaults/overrides taken from
359         # the job order. So we move the job parameters out of the way
360         # and build a new spec['script_parameters'].
361         job_params = spec['script_parameters']
362         spec['script_parameters'] = {}
363
364         for param in self.tool.tool['inputs']:
365             param = copy.deepcopy(param)
366
367             # Data type and "required" flag...
368             types = param['type']
369             if not isinstance(types, list):
370                 types = [types]
371             param['required'] = 'null' not in types
372             non_null_types = [t for t in types if t != "null"]
373             if len(non_null_types) == 1:
374                 the_type = [c for c in non_null_types][0]
375                 dataclass = None
376                 if isinstance(the_type, basestring):
377                     dataclass = self.type_to_dataclass.get(the_type)
378                 if dataclass:
379                     param['dataclass'] = dataclass
380             # Note: If we didn't figure out a single appropriate
381             # dataclass, we just left that attribute out.  We leave
382             # the "type" attribute there in any case, which might help
383             # downstream.
384
385             # Title and description...
386             title = param.pop('label', '')
387             descr = param.pop('doc', '').rstrip('\n')
388             if title:
389                 param['title'] = title
390             if descr:
391                 param['description'] = descr
392
393             # Fill in the value from the current job order, if any.
394             param_id = shortname(param.pop('id'))
395             value = job_params.get(param_id)
396             if value is None:
397                 pass
398             elif not isinstance(value, dict):
399                 param['value'] = value
400             elif param.get('dataclass') in ('File', 'Collection') and value.get('location'):
401                 param['value'] = value['location'][5:]
402
403             spec['script_parameters'][param_id] = param
404         spec['script_parameters']['cwl:tool'] = job_params['cwl:tool']
405         return spec
406
407     def save(self):
408         body = {
409             "components": {
410                 self.job.name: self.pipeline_component_spec(),
411             },
412             "name": self.job.name,
413         }
414         if self.runner.project_uuid:
415             body["owner_uuid"] = self.runner.project_uuid
416         if self.uuid:
417             self.runner.api.pipeline_templates().update(
418                 uuid=self.uuid, body=body).execute(
419                     num_retries=self.runner.num_retries)
420             logger.info("Updated template %s", self.uuid)
421         else:
422             self.uuid = self.runner.api.pipeline_templates().create(
423                 body=body, ensure_unique_name=True).execute(
424                     num_retries=self.runner.num_retries)['uuid']
425             logger.info("Created template %s", self.uuid)