// Copyright (C) The Lightning Authors. All rights reserved. // // SPDX-License-Identifier: AGPL-3.0 package lightning import ( "bufio" "bytes" "encoding/gob" "encoding/json" "errors" "flag" "fmt" "io" "io/ioutil" "math" "net/http" _ "net/http/pprof" "os" "regexp" "runtime" "runtime/debug" "sort" "strconv" "strings" "sync/atomic" "unsafe" "git.arvados.org/arvados.git/sdk/go/arvados" "github.com/arvados/lightning/go-lightning/hgvs" "github.com/james-bowman/nlp" "github.com/kshedden/gonpy" "github.com/sirupsen/logrus" log "github.com/sirupsen/logrus" "golang.org/x/crypto/blake2b" "gonum.org/v1/gonum/mat" ) const annotationMaxTileSpan = 100 type sliceNumpy struct { filter filter threads int chi2Cases []bool chi2PValue float64 pvalueMinFrequency float64 maxFrequency float64 pcaComponents int minCoverage int minCoverageAll bool includeVariant1 bool debugTag tagID cgnames []string samples []sampleInfo trainingSet []int // samples index => training set index, or -1 if not in training set trainingSetSize int pvalue func(onehot []bool) float64 pvalueCallCount int64 } func (cmd *sliceNumpy) RunCommand(prog string, args []string, stdin io.Reader, stdout, stderr io.Writer) int { err := cmd.run(prog, args, stdin, stdout, stderr) if err != nil { fmt.Fprintf(stderr, "%s\n", err) return 1 } return 0 } func (cmd *sliceNumpy) run(prog string, args []string, stdin io.Reader, stdout, stderr io.Writer) error { flags := flag.NewFlagSet("", flag.ContinueOnError) flags.SetOutput(stderr) pprof := flags.String("pprof", "", "serve Go profile data at http://`[addr]:port`") runlocal := flags.Bool("local", false, "run on local host (default: run in an arvados container)") arvadosRAM := flags.Int("arvados-ram", 750000000000, "amount of memory to request for arvados container (`bytes`)") arvadosVCPUs := flags.Int("arvados-vcpus", 96, "number of VCPUs to request for arvados container") projectUUID := flags.String("project", "", "project `UUID` for output data") priority := flags.Int("priority", 500, "container request priority") preemptible := flags.Bool("preemptible", true, "request preemptible instance") inputDir := flags.String("input-dir", "./in", "input `directory`") outputDir := flags.String("output-dir", "./out", "output `directory`") ref := flags.String("ref", "", "reference name (if blank, choose last one that appears in input)") regionsFilename := flags.String("regions", "", "only output columns/annotations that intersect regions in specified bed `file`") expandRegions := flags.Int("expand-regions", 0, "expand specified regions by `N` base pairs on each side`") mergeOutput := flags.Bool("merge-output", false, "merge output into one matrix.npy and one matrix.annotations.csv") hgvsSingle := flags.Bool("single-hgvs-matrix", false, "also generate hgvs-based matrix") hgvsChunked := flags.Bool("chunked-hgvs-matrix", false, "also generate hgvs-based matrix per chromosome") onehotSingle := flags.Bool("single-onehot", false, "generate one-hot tile-based matrix") onehotChunked := flags.Bool("chunked-onehot", false, "generate one-hot tile-based matrix per input chunk") samplesFilename := flags.String("samples", "", "`samples.csv` file with training/validation and case/control groups (see 'lightning choose-samples')") caseControlOnly := flags.Bool("case-control-only", false, "drop samples that are not in case/control groups") onlyPCA := flags.Bool("pca", false, "run principal component analysis, write components to pca.npy and samples.csv") flags.IntVar(&cmd.pcaComponents, "pca-components", 4, "number of PCA components to compute / use in logistic regression") maxPCATiles := flags.Int("max-pca-tiles", 0, "maximum tiles to use as PCA input (filter, then drop every 2nd colum pair until below max)") debugTag := flags.Int("debug-tag", -1, "log debugging details about specified tag") flags.BoolVar(&cmd.minCoverageAll, "min-coverage-all", false, "apply -min-coverage filter based on all samples, not just training set") flags.IntVar(&cmd.threads, "threads", 16, "number of memory-hungry assembly threads, and number of VCPUs to request for arvados container") flags.Float64Var(&cmd.chi2PValue, "chi2-p-value", 1, "do Χ² test (or logistic regression if -samples file has PCA components) and omit columns with p-value above this threshold") flags.Float64Var(&cmd.pvalueMinFrequency, "pvalue-min-frequency", 0.01, "skip p-value calculation on tile variants below this frequency in the training set") flags.Float64Var(&cmd.maxFrequency, "max-frequency", 1, "do not output variants above this frequency in the training set") flags.BoolVar(&cmd.includeVariant1, "include-variant-1", false, "include most common variant when building one-hot matrix") cmd.filter.Flags(flags) err := flags.Parse(args) if err == flag.ErrHelp { return nil } else if err != nil { return err } else if flags.NArg() > 0 { return fmt.Errorf("errant command line arguments after parsed flags: %v", flags.Args()) } if *pprof != "" { go func() { log.Println(http.ListenAndServe(*pprof, nil)) }() } if cmd.chi2PValue != 1 && *samplesFilename == "" { return fmt.Errorf("cannot use provided -chi2-p-value=%f because -samples= value is empty", cmd.chi2PValue) } cmd.debugTag = tagID(*debugTag) if !*runlocal { runner := arvadosContainerRunner{ Name: "lightning slice-numpy", Client: arvados.NewClientFromEnv(), ProjectUUID: *projectUUID, RAM: int64(*arvadosRAM), VCPUs: *arvadosVCPUs, Priority: *priority, KeepCache: 2, APIAccess: true, Preemptible: *preemptible, } err = runner.TranslatePaths(inputDir, regionsFilename, samplesFilename) if err != nil { return err } runner.Args = []string{"slice-numpy", "-local=true", "-pprof=:6060", "-input-dir=" + *inputDir, "-output-dir=/mnt/output", "-threads=" + fmt.Sprintf("%d", cmd.threads), "-regions=" + *regionsFilename, "-expand-regions=" + fmt.Sprintf("%d", *expandRegions), "-merge-output=" + fmt.Sprintf("%v", *mergeOutput), "-single-hgvs-matrix=" + fmt.Sprintf("%v", *hgvsSingle), "-chunked-hgvs-matrix=" + fmt.Sprintf("%v", *hgvsChunked), "-single-onehot=" + fmt.Sprintf("%v", *onehotSingle), "-chunked-onehot=" + fmt.Sprintf("%v", *onehotChunked), "-samples=" + *samplesFilename, "-case-control-only=" + fmt.Sprintf("%v", *caseControlOnly), "-min-coverage-all=" + fmt.Sprintf("%v", cmd.minCoverageAll), "-pca=" + fmt.Sprintf("%v", *onlyPCA), "-pca-components=" + fmt.Sprintf("%d", cmd.pcaComponents), "-max-pca-tiles=" + fmt.Sprintf("%d", *maxPCATiles), "-chi2-p-value=" + fmt.Sprintf("%f", cmd.chi2PValue), "-pvalue-min-frequency=" + fmt.Sprintf("%f", cmd.pvalueMinFrequency), "-max-frequency=" + fmt.Sprintf("%f", cmd.maxFrequency), "-include-variant-1=" + fmt.Sprintf("%v", cmd.includeVariant1), "-debug-tag=" + fmt.Sprintf("%d", cmd.debugTag), } runner.Args = append(runner.Args, cmd.filter.Args()...) var output string output, err = runner.Run() if err != nil { return err } fmt.Fprintln(stdout, output) return nil } infiles, err := allFiles(*inputDir, matchGobFile) if err != nil { return err } if len(infiles) == 0 { err = fmt.Errorf("no input files found in %s", *inputDir) return err } sort.Strings(infiles) var refseq map[string][]tileLibRef var reftiledata = make(map[tileLibRef][]byte, 11000000) in0, err := open(infiles[0]) if err != nil { return err } matchGenome, err := regexp.Compile(cmd.filter.MatchGenome) if err != nil { err = fmt.Errorf("-match-genome: invalid regexp: %q", cmd.filter.MatchGenome) return err } if *samplesFilename != "" { cmd.samples, err = loadSampleInfo(*samplesFilename) if err != nil { return err } } else if *caseControlOnly { return fmt.Errorf("-case-control-only does not make sense without -samples") } cmd.cgnames = nil var tagset [][]byte err = DecodeLibrary(in0, strings.HasSuffix(infiles[0], ".gz"), func(ent *LibraryEntry) error { if len(ent.TagSet) > 0 { tagset = ent.TagSet } for _, cseq := range ent.CompactSequences { if cseq.Name == *ref || *ref == "" { refseq = cseq.TileSequences } } for _, cg := range ent.CompactGenomes { if matchGenome.MatchString(cg.Name) { cmd.cgnames = append(cmd.cgnames, cg.Name) } } for _, tv := range ent.TileVariants { if tv.Ref { reftiledata[tileLibRef{tv.Tag, tv.Variant}] = tv.Sequence } } return nil }) if err != nil { return err } in0.Close() if refseq == nil { err = fmt.Errorf("%s: reference sequence not found", infiles[0]) return err } if len(tagset) == 0 { err = fmt.Errorf("tagset not found") return err } taglib := &tagLibrary{} err = taglib.setTags(tagset) if err != nil { return err } taglen := taglib.TagLen() sort.Strings(cmd.cgnames) if len(cmd.cgnames) == 0 { return fmt.Errorf("fatal: 0 matching samples in library, nothing to do") } cmd.trainingSet = make([]int, len(cmd.cgnames)) if *samplesFilename == "" { cmd.trainingSetSize = len(cmd.cgnames) for i, name := range cmd.cgnames { cmd.samples = append(cmd.samples, sampleInfo{ id: trimFilenameForLabel(name), isTraining: true, }) cmd.trainingSet[i] = i } } else if len(cmd.cgnames) != len(cmd.samples) { return fmt.Errorf("mismatched sample list: %d samples in library, %d in %s", len(cmd.cgnames), len(cmd.samples), *samplesFilename) } else { for i, name := range cmd.cgnames { if s := trimFilenameForLabel(name); s != cmd.samples[i].id { return fmt.Errorf("mismatched sample list: sample %d is %q in library, %q in %s", i, s, cmd.samples[i].id, *samplesFilename) } } if *caseControlOnly { for i := 0; i < len(cmd.samples); i++ { if !cmd.samples[i].isTraining && !cmd.samples[i].isValidation { if i+1 < len(cmd.samples) { copy(cmd.samples[i:], cmd.samples[i+1:]) copy(cmd.cgnames[i:], cmd.cgnames[i+1:]) } cmd.samples = cmd.samples[:len(cmd.samples)-1] cmd.cgnames = cmd.cgnames[:len(cmd.cgnames)-1] i-- } } } cmd.chi2Cases = nil cmd.trainingSetSize = 0 for i := range cmd.cgnames { if cmd.samples[i].isTraining { cmd.trainingSet[i] = cmd.trainingSetSize cmd.trainingSetSize++ cmd.chi2Cases = append(cmd.chi2Cases, cmd.samples[i].isCase) } else { cmd.trainingSet[i] = -1 } } if cmd.pvalue == nil { cmd.pvalue = func(onehot []bool) float64 { return pvalue(onehot, cmd.chi2Cases) } } } if cmd.minCoverageAll { cmd.minCoverage = len(cmd.cgnames) } else { cmd.minCoverage = cmd.trainingSetSize } if cmd.filter.MinCoverage < 1 { cmd.minCoverage = int(math.Ceil(cmd.filter.MinCoverage * float64(cmd.minCoverage))) } if len(cmd.samples[0].pcaComponents) > 0 { cmd.pvalue = glmPvalueFunc(cmd.samples, cmd.pcaComponents) // Unfortunately, statsmodel/glm lib logs stuff to // os.Stdout when it panics on an unsolvable // problem. We recover() from the panic in glm.go, but // we also need to commandeer os.Stdout to avoid // producing large quantities of logs. stdoutWas := os.Stdout defer func() { os.Stdout = stdoutWas }() os.Stdout, err = os.Open(os.DevNull) if err != nil { return err } } // cgnamemap[name]==true for samples that we are including in // output cgnamemap := map[string]bool{} for _, name := range cmd.cgnames { cgnamemap[name] = true } err = writeSampleInfo(cmd.samples, *outputDir) if err != nil { return err } log.Info("indexing reference tiles") type reftileinfo struct { variant tileVariantID seqname string // chr1 pos int // distance from start of chromosome to starttag tiledata []byte // acgtggcaa... excluded bool // true if excluded by regions file nexttag tagID // tagID of following tile (-1 for last tag of chromosome) } isdup := map[tagID]bool{} reftile := map[tagID]*reftileinfo{} for seqname, cseq := range refseq { pos := 0 lastreftag := tagID(-1) for _, libref := range cseq { if cmd.filter.MaxTag >= 0 && libref.Tag > tagID(cmd.filter.MaxTag) { continue } tiledata := reftiledata[libref] if len(tiledata) == 0 { err = fmt.Errorf("missing tiledata for tag %d variant %d in %s in ref", libref.Tag, libref.Variant, seqname) return err } foundthistag := false taglib.FindAll(bufio.NewReader(bytes.NewReader(tiledata[:len(tiledata)-1])), nil, func(tagid tagID, offset, _ int) { if !foundthistag && tagid == libref.Tag { foundthistag = true return } if dupref, ok := reftile[tagid]; ok { log.Printf("dropping reference tile %+v from %s @ %d, tag not unique, also found inside %+v from %s @ %d", tileLibRef{Tag: tagid, Variant: dupref.variant}, dupref.seqname, dupref.pos, libref, seqname, pos+offset+1) delete(reftile, tagid) } else { log.Printf("found tag %d at offset %d inside tile variant %+v on %s @ %d", tagid, offset, libref, seqname, pos+offset+1) } isdup[tagid] = true }) if isdup[libref.Tag] { log.Printf("dropping reference tile %+v from %s @ %d, tag not unique", libref, seqname, pos) } else if reftile[libref.Tag] != nil { log.Printf("dropping reference tile %+v from %s @ %d, tag not unique", tileLibRef{Tag: libref.Tag, Variant: reftile[libref.Tag].variant}, reftile[libref.Tag].seqname, reftile[libref.Tag].pos) delete(reftile, libref.Tag) log.Printf("dropping reference tile %+v from %s @ %d, tag not unique", libref, seqname, pos) isdup[libref.Tag] = true } else { reftile[libref.Tag] = &reftileinfo{ seqname: seqname, variant: libref.Variant, tiledata: tiledata, pos: pos, nexttag: -1, } if lastreftag >= 0 { reftile[lastreftag].nexttag = libref.Tag } lastreftag = libref.Tag } pos += len(tiledata) - taglen } log.Printf("... %s done, len %d", seqname, pos+taglen) } var mask *mask if *regionsFilename != "" { log.Printf("loading regions from %s", *regionsFilename) mask, err = makeMask(*regionsFilename, *expandRegions) if err != nil { return err } log.Printf("before applying mask, len(reftile) == %d", len(reftile)) log.Printf("deleting reftile entries for regions outside %d intervals", mask.Len()) for _, rt := range reftile { if !mask.Check(strings.TrimPrefix(rt.seqname, "chr"), rt.pos, rt.pos+len(rt.tiledata)) { rt.excluded = true } } log.Printf("after applying mask, len(reftile) == %d", len(reftile)) } type hgvsColSet map[hgvs.Variant][2][]int8 encodeHGVS := throttle{Max: len(refseq)} encodeHGVSTodo := map[string]chan hgvsColSet{} tmpHGVSCols := map[string]*os.File{} if *hgvsChunked { for seqname := range refseq { var f *os.File f, err = os.Create(*outputDir + "/tmp." + seqname + ".gob") if err != nil { return err } defer os.Remove(f.Name()) bufw := bufio.NewWriterSize(f, 1<<24) enc := gob.NewEncoder(bufw) tmpHGVSCols[seqname] = f todo := make(chan hgvsColSet, 128) encodeHGVSTodo[seqname] = todo encodeHGVS.Go(func() error { for colset := range todo { err := enc.Encode(colset) if err != nil { encodeHGVS.Report(err) for range todo { } return err } } return bufw.Flush() }) } } var toMerge [][]int16 if *mergeOutput || *hgvsSingle { toMerge = make([][]int16, len(infiles)) } var onehotIndirect [][2][]uint32 // [chunkIndex][axis][index] var onehotChunkSize []uint32 var onehotXrefs [][]onehotXref if *onehotSingle || *onlyPCA { onehotIndirect = make([][2][]uint32, len(infiles)) onehotChunkSize = make([]uint32, len(infiles)) onehotXrefs = make([][]onehotXref, len(infiles)) } chunkStartTag := make([]tagID, len(infiles)) throttleMem := throttle{Max: cmd.threads} // TODO: estimate using mem and data size throttleNumpyMem := throttle{Max: cmd.threads/2 + 1} log.Info("generating annotations and numpy matrix for each slice") var errSkip = errors.New("skip infile") var done int64 for infileIdx, infile := range infiles { infileIdx, infile := infileIdx, infile throttleMem.Go(func() error { seq := make(map[tagID][]TileVariant, 50000) cgs := make(map[string]CompactGenome, len(cmd.cgnames)) f, err := open(infile) if err != nil { return err } defer f.Close() log.Infof("%04d: reading %s", infileIdx, infile) err = DecodeLibrary(f, strings.HasSuffix(infile, ".gz"), func(ent *LibraryEntry) error { for _, tv := range ent.TileVariants { if tv.Ref { continue } // Skip tile with no // corresponding ref tile, if // mask is in play (we can't // determine coordinates for // these) if mask != nil && reftile[tv.Tag] == nil { continue } // Skip tile whose // corresponding ref tile is // outside target regions -- // unless it's a potential // spanning tile. if mask != nil && reftile[tv.Tag].excluded && (int(tv.Tag+1) >= len(tagset) || (bytes.HasSuffix(tv.Sequence, tagset[tv.Tag+1]) && reftile[tv.Tag+1] != nil && !reftile[tv.Tag+1].excluded)) { continue } if tv.Tag == cmd.debugTag { log.Printf("infile %d %s tag %d variant %d hash %x", infileIdx, infile, tv.Tag, tv.Variant, tv.Blake2b[:3]) } variants := seq[tv.Tag] if len(variants) == 0 { variants = make([]TileVariant, 100) } for len(variants) <= int(tv.Variant) { variants = append(variants, TileVariant{}) } variants[int(tv.Variant)] = tv seq[tv.Tag] = variants } for _, cg := range ent.CompactGenomes { if cmd.filter.MaxTag >= 0 && cg.StartTag > tagID(cmd.filter.MaxTag) { return errSkip } if !cgnamemap[cg.Name] { continue } // pad to full slice size // to avoid out-of-bounds // checks later if sliceSize := 2 * int(cg.EndTag-cg.StartTag); len(cg.Variants) < sliceSize { cg.Variants = append(cg.Variants, make([]tileVariantID, sliceSize-len(cg.Variants))...) } cgs[cg.Name] = cg } return nil }) if err == errSkip { return nil } else if err != nil { return fmt.Errorf("%04d: DecodeLibrary(%s): %w", infileIdx, infile, err) } tagstart := cgs[cmd.cgnames[0]].StartTag tagend := cgs[cmd.cgnames[0]].EndTag chunkStartTag[infileIdx] = tagstart // TODO: filters log.Infof("%04d: renumber/dedup variants for tags %d-%d", infileIdx, tagstart, tagend) variantRemap := make([][]tileVariantID, tagend-tagstart) throttleCPU := throttle{Max: runtime.GOMAXPROCS(0)} for tag, variants := range seq { tag, variants := tag, variants throttleCPU.Go(func() error { alleleCoverage := 0 count := make(map[[blake2b.Size256]byte]int, len(variants)) rt := reftile[tag] if rt != nil { count[blake2b.Sum256(rt.tiledata)] = 0 } for cgidx, cgname := range cmd.cgnames { if !cmd.minCoverageAll && !cmd.samples[cgidx].isTraining { continue } cg := cgs[cgname] idx := int(tag-tagstart) * 2 for allele := 0; allele < 2; allele++ { v := cg.Variants[idx+allele] if v > 0 && len(variants[v].Sequence) > 0 { count[variants[v].Blake2b]++ alleleCoverage++ } if v > 0 && tag == cmd.debugTag { log.Printf("tag %d cg %s allele %d tv %d hash %x count is now %d", tag, cgname, allele, v, variants[v].Blake2b[:3], count[variants[v].Blake2b]) } } } if alleleCoverage < cmd.minCoverage*2 { idx := int(tag-tagstart) * 2 for _, cg := range cgs { cg.Variants[idx] = 0 cg.Variants[idx+1] = 0 } if tag == cmd.debugTag { log.Printf("tag %d alleleCoverage %d < min %d, sample data wiped", tag, alleleCoverage, cmd.minCoverage*2) } return nil } // hash[i] will be the hash of // the variant(s) that should // be at rank i (0-based). hash := make([][blake2b.Size256]byte, 0, len(count)) for b := range count { hash = append(hash, b) } sort.Slice(hash, func(i, j int) bool { bi, bj := &hash[i], &hash[j] if ci, cj := count[*bi], count[*bj]; ci != cj { return ci > cj } else { return bytes.Compare((*bi)[:], (*bj)[:]) < 0 } }) // rank[b] will be the 1-based // new variant number for // variants whose hash is b. rank := make(map[[blake2b.Size256]byte]tileVariantID, len(hash)) for i, h := range hash { rank[h] = tileVariantID(i + 1) } if tag == cmd.debugTag { for h, r := range rank { log.Printf("tag %d rank(%x) = %v", tag, h[:3], r) } } // remap[v] will be the new // variant number for original // variant number v. remap := make([]tileVariantID, len(variants)) for i, tv := range variants { remap[i] = rank[tv.Blake2b] } if tag == cmd.debugTag { for in, out := range remap { if out > 0 { log.Printf("tag %d remap %d => %d", tag, in, out) } } } variantRemap[tag-tagstart] = remap if rt != nil { refrank := rank[blake2b.Sum256(rt.tiledata)] if tag == cmd.debugTag { log.Printf("tag %d reftile variant %d => %d", tag, rt.variant, refrank) } rt.variant = refrank } return nil }) } throttleCPU.Wait() var onehotChunk [][]int8 var onehotXref []onehotXref var annotationsFilename string if *onlyPCA { annotationsFilename = "/dev/null" } else { annotationsFilename = fmt.Sprintf("%s/matrix.%04d.annotations.csv", *outputDir, infileIdx) log.Infof("%04d: writing %s", infileIdx, annotationsFilename) } annof, err := os.Create(annotationsFilename) if err != nil { return err } annow := bufio.NewWriterSize(annof, 1<<20) outcol := 0 for tag := tagstart; tag < tagend; tag++ { rt := reftile[tag] if rt == nil && mask != nil { // With no ref tile, we don't // have coordinates to say // this is in the desired // regions -- so it's not. // TODO: handle ref spanning // tile case. continue } if rt != nil && rt.excluded { // TODO: don't skip yet -- // first check for spanning // tile variants that // intersect non-excluded ref // tiles. continue } if cmd.filter.MaxTag >= 0 && tag > tagID(cmd.filter.MaxTag) { break } remap := variantRemap[tag-tagstart] if remap == nil { // was not assigned above, // because minCoverage outcol++ continue } maxv := tileVariantID(0) for _, v := range remap { if maxv < v { maxv = v } } if *onehotChunked || *onehotSingle || *onlyPCA { onehot, xrefs := cmd.tv2homhet(cgs, maxv, remap, tag, tagstart, seq) if tag == cmd.debugTag { log.WithFields(logrus.Fields{ "onehot": onehot, "xrefs": xrefs, }).Info("tv2homhet()") } onehotChunk = append(onehotChunk, onehot...) onehotXref = append(onehotXref, xrefs...) } if *onlyPCA { outcol++ continue } if rt == nil { // Reference does not use any // variant of this tile // // TODO: diff against the // relevant portion of the // ref's spanning tile outcol++ continue } fmt.Fprintf(annow, "%d,%d,%d,=,%s,%d,,,\n", tag, outcol, rt.variant, rt.seqname, rt.pos) variants := seq[tag] reftilestr := strings.ToUpper(string(rt.tiledata)) done := make([]bool, maxv+1) variantDiffs := make([][]hgvs.Variant, maxv+1) for v, tv := range variants { v := remap[v] if v == 0 || v == rt.variant || done[v] { continue } else { done[v] = true } if len(tv.Sequence) < taglen { continue } // if reftilestr doesn't end // in the same tag as tv, // extend reftilestr with // following ref tiles until // it does (up to an arbitrary // sanity-check limit) reftilestr := reftilestr endtagstr := strings.ToUpper(string(tv.Sequence[len(tv.Sequence)-taglen:])) for i, rt := 0, rt; i < annotationMaxTileSpan && !strings.HasSuffix(reftilestr, endtagstr) && rt.nexttag >= 0; i++ { rt = reftile[rt.nexttag] if rt == nil { break } reftilestr += strings.ToUpper(string(rt.tiledata[taglen:])) } if mask != nil && !mask.Check(strings.TrimPrefix(rt.seqname, "chr"), rt.pos, rt.pos+len(reftilestr)) { continue } if !strings.HasSuffix(reftilestr, endtagstr) { fmt.Fprintf(annow, "%d,%d,%d,,%s,%d,,,\n", tag, outcol, v, rt.seqname, rt.pos) continue } if lendiff := len(reftilestr) - len(tv.Sequence); lendiff < -1000 || lendiff > 1000 { fmt.Fprintf(annow, "%d,%d,%d,,%s,%d,,,\n", tag, outcol, v, rt.seqname, rt.pos) continue } diffs, _ := hgvs.Diff(reftilestr, strings.ToUpper(string(tv.Sequence)), 0) for i := range diffs { diffs[i].Position += rt.pos } for _, diff := range diffs { fmt.Fprintf(annow, "%d,%d,%d,%s:g.%s,%s,%d,%s,%s,%s\n", tag, outcol, v, rt.seqname, diff.String(), rt.seqname, diff.Position, diff.Ref, diff.New, diff.Left) } if *hgvsChunked { variantDiffs[v] = diffs } } if *hgvsChunked { // We can now determine, for each HGVS // variant (diff) in this reftile // region, whether a given genome // phase/allele (1) has the variant, (0) has // =ref or a different variant in that // position, or (-1) is lacking // coverage / couldn't be diffed. hgvsCol := hgvsColSet{} for _, diffs := range variantDiffs { for _, diff := range diffs { if _, ok := hgvsCol[diff]; ok { continue } hgvsCol[diff] = [2][]int8{ make([]int8, len(cmd.cgnames)), make([]int8, len(cmd.cgnames)), } } } for row, name := range cmd.cgnames { variants := cgs[name].Variants[(tag-tagstart)*2:] for ph := 0; ph < 2; ph++ { v := variants[ph] if int(v) >= len(remap) { v = 0 } else { v = remap[v] } if v == rt.variant { // hgvsCol[*][ph][row] is already 0 } else if len(variantDiffs[v]) == 0 { // lacking coverage / couldn't be diffed for _, col := range hgvsCol { col[ph][row] = -1 } } else { for _, diff := range variantDiffs[v] { hgvsCol[diff][ph][row] = 1 } } } } for diff, colpair := range hgvsCol { allele2homhet(colpair) if !cmd.filterHGVScolpair(colpair) { delete(hgvsCol, diff) } } if len(hgvsCol) > 0 { encodeHGVSTodo[rt.seqname] <- hgvsCol } } outcol++ } err = annow.Flush() if err != nil { return err } err = annof.Close() if err != nil { return err } if *onehotChunked { // transpose onehotChunk[col][row] to numpy[row*ncols+col] rows := len(cmd.cgnames) cols := len(onehotChunk) log.Infof("%04d: preparing onehot numpy (rows=%d, cols=%d, mem=%d)", infileIdx, rows, cols, rows*cols) throttleNumpyMem.Acquire() out := onehotcols2int8(onehotChunk) fnm := fmt.Sprintf("%s/onehot.%04d.npy", *outputDir, infileIdx) err = writeNumpyInt8(fnm, out, rows, cols) if err != nil { return err } fnm = fmt.Sprintf("%s/onehot-columns.%04d.npy", *outputDir, infileIdx) err = writeNumpyInt32(fnm, onehotXref2int32(onehotXref), 4, len(onehotXref)) if err != nil { return err } debug.FreeOSMemory() throttleNumpyMem.Release() } if *onehotSingle || *onlyPCA { onehotIndirect[infileIdx] = onehotChunk2Indirect(onehotChunk) onehotChunkSize[infileIdx] = uint32(len(onehotChunk)) onehotXrefs[infileIdx] = onehotXref n := len(onehotIndirect[infileIdx][0]) log.Infof("%04d: keeping onehot coordinates in memory (n=%d, mem=%d)", infileIdx, n, n*8*2) } if !(*onehotSingle || *onehotChunked || *onlyPCA) || *mergeOutput || *hgvsSingle { log.Infof("%04d: preparing numpy (rows=%d, cols=%d)", infileIdx, len(cmd.cgnames), 2*outcol) throttleNumpyMem.Acquire() rows := len(cmd.cgnames) cols := 2 * outcol out := make([]int16, rows*cols) for row, name := range cmd.cgnames { outidx := row * cols for col, v := range cgs[name].Variants { tag := tagstart + tagID(col/2) if cmd.filter.MaxTag >= 0 && tag > tagID(cmd.filter.MaxTag) { break } if rt := reftile[tag]; mask != nil && (rt == nil || rt.excluded) { continue } if v == 0 { out[outidx] = 0 // tag not found / spanning tile } else if variants, ok := seq[tag]; ok && int(v) < len(variants) && len(variants[v].Sequence) > 0 { out[outidx] = int16(variantRemap[tag-tagstart][v]) } else { out[outidx] = -1 // low quality tile variant } if tag == cmd.debugTag { log.Printf("tag %d row %d col %d outidx %d v %d out %d", tag, row, col, outidx, v, out[outidx]) } outidx++ } } seq = nil cgs = nil debug.FreeOSMemory() throttleNumpyMem.Release() if *mergeOutput || *hgvsSingle { log.Infof("%04d: matrix fragment %d rows x %d cols", infileIdx, rows, cols) toMerge[infileIdx] = out } if !*mergeOutput && !*onehotChunked && !*onehotSingle { fnm := fmt.Sprintf("%s/matrix.%04d.npy", *outputDir, infileIdx) err = writeNumpyInt16(fnm, out, rows, cols) if err != nil { return err } } } debug.FreeOSMemory() log.Infof("%s: done (%d/%d)", infile, int(atomic.AddInt64(&done, 1)), len(infiles)) return nil }) } if err = throttleMem.Wait(); err != nil { return err } if *hgvsChunked { log.Info("flushing hgvsCols temp files") for seqname := range refseq { close(encodeHGVSTodo[seqname]) } err = encodeHGVS.Wait() if err != nil { return err } for seqname := range refseq { log.Infof("%s: reading hgvsCols from temp file", seqname) f := tmpHGVSCols[seqname] _, err = f.Seek(0, io.SeekStart) if err != nil { return err } var hgvsCols hgvsColSet dec := gob.NewDecoder(bufio.NewReaderSize(f, 1<<24)) for err == nil { err = dec.Decode(&hgvsCols) } if err != io.EOF { return err } log.Infof("%s: sorting %d hgvs variants", seqname, len(hgvsCols)) variants := make([]hgvs.Variant, 0, len(hgvsCols)) for v := range hgvsCols { variants = append(variants, v) } sort.Slice(variants, func(i, j int) bool { vi, vj := &variants[i], &variants[j] if vi.Position != vj.Position { return vi.Position < vj.Position } else if vi.Ref != vj.Ref { return vi.Ref < vj.Ref } else { return vi.New < vj.New } }) rows := len(cmd.cgnames) cols := len(variants) * 2 log.Infof("%s: building hgvs matrix (rows=%d, cols=%d, mem=%d)", seqname, rows, cols, rows*cols) out := make([]int8, rows*cols) for varIdx, variant := range variants { hgvsCols := hgvsCols[variant] for row := range cmd.cgnames { for ph := 0; ph < 2; ph++ { out[row*cols+varIdx+ph] = hgvsCols[ph][row] } } } err = writeNumpyInt8(fmt.Sprintf("%s/hgvs.%s.npy", *outputDir, seqname), out, rows, cols) if err != nil { return err } out = nil fnm := fmt.Sprintf("%s/hgvs.%s.annotations.csv", *outputDir, seqname) log.Infof("%s: writing hgvs column labels to %s", seqname, fnm) var hgvsLabels bytes.Buffer for varIdx, variant := range variants { fmt.Fprintf(&hgvsLabels, "%d,%s:g.%s\n", varIdx, seqname, variant.String()) } err = ioutil.WriteFile(fnm, hgvsLabels.Bytes(), 0666) if err != nil { return err } } } if *mergeOutput || *hgvsSingle { var annow *bufio.Writer var annof *os.File if *mergeOutput { annoFilename := fmt.Sprintf("%s/matrix.annotations.csv", *outputDir) annof, err = os.Create(annoFilename) if err != nil { return err } annow = bufio.NewWriterSize(annof, 1<<20) } rows := len(cmd.cgnames) cols := 0 for _, chunk := range toMerge { cols += len(chunk) / rows } log.Infof("merging output matrix (rows=%d, cols=%d, mem=%d) and annotations", rows, cols, rows*cols*2) var out []int16 if *mergeOutput { out = make([]int16, rows*cols) } hgvsCols := map[string][2][]int16{} // hgvs -> [[g0,g1,g2,...], [g0,g1,g2,...]] (slice of genomes for each phase) startcol := 0 for outIdx, chunk := range toMerge { chunkcols := len(chunk) / rows if *mergeOutput { for row := 0; row < rows; row++ { copy(out[row*cols+startcol:], chunk[row*chunkcols:(row+1)*chunkcols]) } } toMerge[outIdx] = nil annotationsFilename := fmt.Sprintf("%s/matrix.%04d.annotations.csv", *outputDir, outIdx) log.Infof("reading %s", annotationsFilename) buf, err := os.ReadFile(annotationsFilename) if err != nil { return err } if *mergeOutput { err = os.Remove(annotationsFilename) if err != nil { return err } } for _, line := range bytes.Split(buf, []byte{'\n'}) { if len(line) == 0 { continue } fields := bytes.SplitN(line, []byte{','}, 9) tag, _ := strconv.Atoi(string(fields[0])) incol, _ := strconv.Atoi(string(fields[1])) tileVariant, _ := strconv.Atoi(string(fields[2])) hgvsID := string(fields[3]) seqname := string(fields[4]) pos, _ := strconv.Atoi(string(fields[5])) refseq := fields[6] if hgvsID == "" { // Null entry for un-diffable // tile variant continue } if hgvsID == "=" { // Null entry for ref tile continue } if mask != nil && !mask.Check(strings.TrimPrefix(seqname, "chr"), pos, pos+len(refseq)) { // The tile intersects one of // the selected regions, but // this particular HGVS // variant does not. continue } hgvsColPair := hgvsCols[hgvsID] if hgvsColPair[0] == nil { // values in new columns start // out as -1 ("no data yet") // or 0 ("=ref") here, may // change to 1 ("hgvs variant // present") below, either on // this line or a future line. hgvsColPair = [2][]int16{make([]int16, len(cmd.cgnames)), make([]int16, len(cmd.cgnames))} rt, ok := reftile[tagID(tag)] if !ok { err = fmt.Errorf("bug: seeing annotations for tag %d, but it has no reftile entry", tag) return err } for ph := 0; ph < 2; ph++ { for row := 0; row < rows; row++ { v := chunk[row*chunkcols+incol*2+ph] if tileVariantID(v) == rt.variant { hgvsColPair[ph][row] = 0 } else { hgvsColPair[ph][row] = -1 } } } hgvsCols[hgvsID] = hgvsColPair if annow != nil { hgvsref := hgvs.Variant{ Position: pos, Ref: string(refseq), New: string(refseq), } fmt.Fprintf(annow, "%d,%d,%d,%s:g.%s,%s,%d,%s,%s,%s\n", tag, incol+startcol/2, rt.variant, seqname, hgvsref.String(), seqname, pos, refseq, refseq, fields[8]) } } if annow != nil { fmt.Fprintf(annow, "%d,%d,%d,%s,%s,%d,%s,%s,%s\n", tag, incol+startcol/2, tileVariant, hgvsID, seqname, pos, refseq, fields[7], fields[8]) } for ph := 0; ph < 2; ph++ { for row := 0; row < rows; row++ { v := chunk[row*chunkcols+incol*2+ph] if int(v) == tileVariant { hgvsColPair[ph][row] = 1 } } } } startcol += chunkcols } if *mergeOutput { err = annow.Flush() if err != nil { return err } err = annof.Close() if err != nil { return err } err = writeNumpyInt16(fmt.Sprintf("%s/matrix.npy", *outputDir), out, rows, cols) if err != nil { return err } } out = nil if *hgvsSingle { cols = len(hgvsCols) * 2 log.Printf("building hgvs-based matrix: %d rows x %d cols", rows, cols) out = make([]int16, rows*cols) hgvsIDs := make([]string, 0, cols/2) for hgvsID := range hgvsCols { hgvsIDs = append(hgvsIDs, hgvsID) } sort.Strings(hgvsIDs) var hgvsLabels bytes.Buffer for idx, hgvsID := range hgvsIDs { fmt.Fprintf(&hgvsLabels, "%d,%s\n", idx, hgvsID) for ph := 0; ph < 2; ph++ { hgvscol := hgvsCols[hgvsID][ph] for row, val := range hgvscol { out[row*cols+idx*2+ph] = val } } } err = writeNumpyInt16(fmt.Sprintf("%s/hgvs.npy", *outputDir), out, rows, cols) if err != nil { return err } fnm := fmt.Sprintf("%s/hgvs.annotations.csv", *outputDir) log.Printf("writing hgvs labels: %s", fnm) err = ioutil.WriteFile(fnm, hgvsLabels.Bytes(), 0777) if err != nil { return err } } } if *onehotSingle || *onlyPCA { nzCount := 0 for _, part := range onehotIndirect { nzCount += len(part[0]) } onehot := make([]uint32, nzCount*2) // [r,r,r,...,c,c,c,...] var xrefs []onehotXref chunkOffset := uint32(0) outcol := 0 for i, part := range onehotIndirect { for i := range part[1] { part[1][i] += chunkOffset } copy(onehot[outcol:], part[0]) copy(onehot[outcol+nzCount:], part[1]) xrefs = append(xrefs, onehotXrefs[i]...) outcol += len(part[0]) chunkOffset += onehotChunkSize[i] part[0] = nil part[1] = nil onehotXrefs[i] = nil debug.FreeOSMemory() } if *onehotSingle { fnm := fmt.Sprintf("%s/onehot.npy", *outputDir) err = writeNumpyUint32(fnm, onehot, 2, nzCount) if err != nil { return err } fnm = fmt.Sprintf("%s/onehot-columns.npy", *outputDir) err = writeNumpyInt32(fnm, onehotXref2int32(xrefs), 5, len(xrefs)) if err != nil { return err } fnm = fmt.Sprintf("%s/stats.json", *outputDir) j, err := json.Marshal(map[string]interface{}{ "pvalueCallCount": cmd.pvalueCallCount, }) if err != nil { return err } err = os.WriteFile(fnm, j, 0777) if err != nil { return err } } if *onlyPCA { cols := 0 for _, c := range onehot[nzCount:] { if int(c) >= cols { cols = int(c) + 1 } } if cols == 0 { return fmt.Errorf("cannot do PCA: one-hot matrix is empty") } log.Printf("have %d one-hot cols", cols) stride := 1 for *maxPCATiles > 0 && cols > *maxPCATiles*2 { cols = (cols + 1) / 2 stride = stride * 2 } if cols%2 == 1 { // we work with pairs of columns cols++ } log.Printf("creating full matrix (%d rows) and training matrix (%d rows) with %d cols, stride %d", len(cmd.cgnames), cmd.trainingSetSize, cols, stride) mtxFull := mat.NewDense(len(cmd.cgnames), cols, nil) mtxTrain := mat.NewDense(cmd.trainingSetSize, cols, nil) for i, c := range onehot[nzCount:] { if int(c/2)%stride == 0 { outcol := int(c/2)/stride*2 + int(c)%2 mtxFull.Set(int(onehot[i]), outcol, 1) if trainRow := cmd.trainingSet[int(onehot[i])]; trainRow >= 0 { mtxTrain.Set(trainRow, outcol, 1) } } } log.Print("fitting") transformer := nlp.NewPCA(cmd.pcaComponents) transformer.Fit(mtxTrain.T()) log.Printf("transforming") pca, err := transformer.Transform(mtxFull.T()) if err != nil { return err } pca = pca.T() outrows, outcols := pca.Dims() log.Printf("copying result to numpy output array: %d rows, %d cols", outrows, outcols) out := make([]float64, outrows*outcols) for i := 0; i < outrows; i++ { for j := 0; j < outcols; j++ { out[i*outcols+j] = pca.At(i, j) } } fnm := fmt.Sprintf("%s/pca.npy", *outputDir) log.Printf("writing numpy: %s", fnm) output, err := os.OpenFile(fnm, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0777) if err != nil { return err } npw, err := gonpy.NewWriter(nopCloser{output}) if err != nil { return fmt.Errorf("gonpy.NewWriter: %w", err) } npw.Shape = []int{outrows, outcols} err = npw.WriteFloat64(out) if err != nil { return fmt.Errorf("WriteFloat64: %w", err) } err = output.Close() if err != nil { return err } log.Print("done") log.Print("copying pca components to sampleInfo") for i := range cmd.samples { cmd.samples[i].pcaComponents = make([]float64, outcols) for c := 0; c < outcols; c++ { cmd.samples[i].pcaComponents[c] = pca.At(i, c) } } log.Print("done") err = writeSampleInfo(cmd.samples, *outputDir) if err != nil { return err } } } if !*mergeOutput && !*onehotChunked && !*onehotSingle && !*onlyPCA { tagoffsetFilename := *outputDir + "/chunk-tag-offset.csv" log.Infof("writing tag offsets to %s", tagoffsetFilename) var f *os.File f, err = os.Create(tagoffsetFilename) if err != nil { return err } defer f.Close() for idx, offset := range chunkStartTag { _, err = fmt.Fprintf(f, "%q,%d\n", fmt.Sprintf("matrix.%04d.npy", idx), offset) if err != nil { err = fmt.Errorf("write %s: %w", tagoffsetFilename, err) return err } } err = f.Close() if err != nil { err = fmt.Errorf("close %s: %w", tagoffsetFilename, err) return err } } return nil } type sampleInfo struct { id string isCase bool isControl bool isTraining bool isValidation bool pcaComponents []float64 } // Read samples.csv file with case/control and training/validation // flags. func loadSampleInfo(samplesFilename string) ([]sampleInfo, error) { var si []sampleInfo f, err := open(samplesFilename) if err != nil { return nil, err } buf, err := io.ReadAll(f) f.Close() if err != nil { return nil, err } lineNum := 0 for _, csv := range bytes.Split(buf, []byte{'\n'}) { lineNum++ if len(csv) == 0 { continue } split := strings.Split(string(csv), ",") if len(split) < 4 { return nil, fmt.Errorf("%d fields < 4 in %s line %d: %q", len(split), samplesFilename, lineNum, csv) } if split[0] == "Index" && split[1] == "SampleID" && split[2] == "CaseControl" && split[3] == "TrainingValidation" { continue } idx, err := strconv.Atoi(split[0]) if err != nil { if lineNum == 1 { return nil, fmt.Errorf("header does not look right: %q", csv) } return nil, fmt.Errorf("%s line %d: index: %s", samplesFilename, lineNum, err) } if idx != len(si) { return nil, fmt.Errorf("%s line %d: index %d out of order", samplesFilename, lineNum, idx) } var pcaComponents []float64 if len(split) > 4 { for _, s := range split[4:] { f, err := strconv.ParseFloat(s, 64) if err != nil { return nil, fmt.Errorf("%s line %d: cannot parse float %q: %s", samplesFilename, lineNum, s, err) } pcaComponents = append(pcaComponents, f) } } si = append(si, sampleInfo{ id: split[1], isCase: split[2] == "1", isControl: split[2] == "0", isTraining: split[3] == "1", isValidation: split[3] == "0" && len(split[2]) > 0, // fix errant 0s in input pcaComponents: pcaComponents, }) } return si, nil } func writeSampleInfo(samples []sampleInfo, outputDir string) error { fnm := outputDir + "/samples.csv" log.Infof("writing sample metadata to %s", fnm) f, err := os.Create(fnm) if err != nil { return err } defer f.Close() pcaLabels := "" if len(samples) > 0 { for i := range samples[0].pcaComponents { pcaLabels += fmt.Sprintf(",PCA%d", i) } } _, err = fmt.Fprintf(f, "Index,SampleID,CaseControl,TrainingValidation%s\n", pcaLabels) if err != nil { return err } for i, si := range samples { var cc, tv string if si.isCase { cc = "1" } else if si.isControl { cc = "0" } if si.isTraining { tv = "1" } else if si.isValidation { tv = "0" } var pcavals string for _, pcaval := range si.pcaComponents { pcavals += fmt.Sprintf(",%f", pcaval) } _, err = fmt.Fprintf(f, "%d,%s,%s,%s%s\n", i, si.id, cc, tv, pcavals) if err != nil { return fmt.Errorf("write %s: %w", fnm, err) } } err = f.Close() if err != nil { return fmt.Errorf("close %s: %w", fnm, err) } log.Print("done") return nil } func (cmd *sliceNumpy) filterHGVScolpair(colpair [2][]int8) bool { if cmd.chi2PValue >= 1 { return true } col0 := make([]bool, 0, len(cmd.chi2Cases)) col1 := make([]bool, 0, len(cmd.chi2Cases)) cases := make([]bool, 0, len(cmd.chi2Cases)) for i, c := range cmd.chi2Cases { if colpair[0][i] < 0 { continue } col0 = append(col0, colpair[0][i] != 0) col1 = append(col1, colpair[1][i] != 0) cases = append(cases, c) } return len(cases) >= cmd.minCoverage && (pvalue(col0, cases) <= cmd.chi2PValue || pvalue(col1, cases) <= cmd.chi2PValue) } func writeNumpyUint32(fnm string, out []uint32, rows, cols int) error { output, err := os.Create(fnm) if err != nil { return err } defer output.Close() bufw := bufio.NewWriterSize(output, 1<<26) npw, err := gonpy.NewWriter(nopCloser{bufw}) if err != nil { return err } log.WithFields(log.Fields{ "filename": fnm, "rows": rows, "cols": cols, "bytes": rows * cols * 4, }).Infof("writing numpy: %s", fnm) npw.Shape = []int{rows, cols} npw.WriteUint32(out) err = bufw.Flush() if err != nil { return err } return output.Close() } func writeNumpyInt32(fnm string, out []int32, rows, cols int) error { output, err := os.Create(fnm) if err != nil { return err } defer output.Close() bufw := bufio.NewWriterSize(output, 1<<26) npw, err := gonpy.NewWriter(nopCloser{bufw}) if err != nil { return err } log.WithFields(log.Fields{ "filename": fnm, "rows": rows, "cols": cols, "bytes": rows * cols * 4, }).Infof("writing numpy: %s", fnm) npw.Shape = []int{rows, cols} npw.WriteInt32(out) err = bufw.Flush() if err != nil { return err } return output.Close() } func writeNumpyInt16(fnm string, out []int16, rows, cols int) error { output, err := os.Create(fnm) if err != nil { return err } defer output.Close() bufw := bufio.NewWriterSize(output, 1<<26) npw, err := gonpy.NewWriter(nopCloser{bufw}) if err != nil { return err } log.WithFields(log.Fields{ "filename": fnm, "rows": rows, "cols": cols, "bytes": rows * cols * 2, }).Infof("writing numpy: %s", fnm) npw.Shape = []int{rows, cols} npw.WriteInt16(out) err = bufw.Flush() if err != nil { return err } return output.Close() } func writeNumpyInt8(fnm string, out []int8, rows, cols int) error { output, err := os.Create(fnm) if err != nil { return err } defer output.Close() bufw := bufio.NewWriterSize(output, 1<<26) npw, err := gonpy.NewWriter(nopCloser{bufw}) if err != nil { return err } log.WithFields(log.Fields{ "filename": fnm, "rows": rows, "cols": cols, "bytes": rows * cols, }).Infof("writing numpy: %s", fnm) npw.Shape = []int{rows, cols} npw.WriteInt8(out) err = bufw.Flush() if err != nil { return err } return output.Close() } func allele2homhet(colpair [2][]int8) { a, b := colpair[0], colpair[1] for i, av := range a { bv := b[i] if av < 0 || bv < 0 { // no-call a[i], b[i] = -1, -1 } else if av > 0 && bv > 0 { // hom a[i], b[i] = 1, 0 } else if av > 0 || bv > 0 { // het a[i], b[i] = 0, 1 } else { // ref (or a different variant in same position) // (this is a no-op) a[i], b[i] = 0, 0 } } } type onehotXref struct { tag tagID variant tileVariantID hom bool pvalue float64 maf float64 } const onehotXrefSize = unsafe.Sizeof(onehotXref{}) // Build onehot matrix (m[tileVariantIndex][genome] == 0 or 1) for all // variants of a single tile/tag#. // // Return nil if no tile variant passes Χ² filter. func (cmd *sliceNumpy) tv2homhet(cgs map[string]CompactGenome, maxv tileVariantID, remap []tileVariantID, tag, chunkstarttag tagID, seq map[tagID][]TileVariant) ([][]int8, []onehotXref) { if tag == cmd.debugTag { tv := make([]tileVariantID, len(cmd.cgnames)*2) for i, name := range cmd.cgnames { copy(tv[i*2:(i+1)*2], cgs[name].Variants[(tag-chunkstarttag)*2:]) } log.WithFields(logrus.Fields{ "cgs[i].Variants[tag*2+j]": tv, "maxv": maxv, "remap": remap, "tag": tag, "chunkstarttag": chunkstarttag, }).Info("tv2homhet()") } if maxv < 1 || (maxv < 2 && !cmd.includeVariant1) { // everyone has the most common variant (of the variants we don't drop) return nil, nil } tagoffset := tag - chunkstarttag coverage := 0 for cgidx, cgname := range cmd.cgnames { if !cmd.minCoverageAll && !cmd.samples[cgidx].isTraining { continue } cg := cgs[cgname] alleles := 0 for _, v := range cg.Variants[tagoffset*2 : tagoffset*2+2] { if v > 0 && int(v) < len(seq[tag]) && len(seq[tag][v].Sequence) > 0 { alleles++ } } if alleles == 2 { coverage++ } } if coverage < cmd.minCoverage { return nil, nil } // "observed" array for p-value calculation (training set // only) obs := make([][]bool, (maxv+1)*2) // 2 slices (hom + het) for each variant# // one-hot output (all samples) outcols := make([][]int8, (maxv+1)*2) for i := range obs { obs[i] = make([]bool, cmd.trainingSetSize) outcols[i] = make([]int8, len(cmd.cgnames)) } for cgid, name := range cmd.cgnames { tsid := cmd.trainingSet[cgid] cgvars := cgs[name].Variants[tagoffset*2:] tv0, tv1 := remap[cgvars[0]], remap[cgvars[1]] for v := tileVariantID(1); v <= maxv; v++ { if tv0 == v && tv1 == v { if tsid >= 0 { obs[v*2][tsid] = true } outcols[v*2][cgid] = 1 } else if tv0 == v || tv1 == v { if tsid >= 0 { obs[v*2+1][tsid] = true } outcols[v*2+1][cgid] = 1 } } } var onehot [][]int8 var xref []onehotXref var maf float64 for col := 2; col < len(obs); col++ { // col 0,1 correspond to tile variant 0, i.e., // no-call; col 2,3 correspond to the most common // variant; so we (normally) start at col 4. if col < 4 && !cmd.includeVariant1 { continue } if col&1 == 0 { maf = homhet2maf(obs[col : col+2]) if maf < cmd.pvalueMinFrequency { // Skip both columns (hom and het) if // allele frequency is below threshold col++ continue } if maf > cmd.maxFrequency { // Skip both columns if allele // frequency is above threshold col++ continue } } atomic.AddInt64(&cmd.pvalueCallCount, 1) p := cmd.pvalue(obs[col]) if cmd.chi2PValue < 1 && !(p < cmd.chi2PValue) { continue } onehot = append(onehot, outcols[col]) xref = append(xref, onehotXref{ tag: tag, variant: tileVariantID(col >> 1), hom: col&1 == 0, pvalue: p, maf: maf, }) } return onehot, xref } func homhet2maf(onehot [][]bool) float64 { if len(onehot[0]) == 0 { return 0 } n := 0 for i := range onehot[0] { if onehot[0][i] { // hom n += 2 } else if onehot[1][i] { // het n += 1 } } return float64(n) / float64(len(onehot[0])*2) } // convert a []onehotXref with length N to a numpy-style []int32 // matrix with N columns, one row per field of onehotXref struct. // // Hom/het row contains hom=0, het=1. // // P-value row contains 1000000x actual p-value. func onehotXref2int32(xrefs []onehotXref) []int32 { xcols := len(xrefs) xdata := make([]int32, 6*xcols) for i, xref := range xrefs { xdata[i] = int32(xref.tag) xdata[xcols+i] = int32(xref.variant) if xref.hom { xdata[xcols*2+i] = 1 } xdata[xcols*3+i] = int32(xref.pvalue * 1000000) xdata[xcols*4+i] = int32(-math.Log10(xref.pvalue) * 1000000) xdata[xcols*5+i] = int32(xref.maf * 1000000) } return xdata } // transpose onehot data from in[col][row] to numpy-style // out[row*cols+col]. func onehotcols2int8(in [][]int8) []int8 { if len(in) == 0 { return nil } cols := len(in) rows := len(in[0]) out := make([]int8, rows*cols) for row := 0; row < rows; row++ { outrow := out[row*cols:] for col, incol := range in { outrow[col] = incol[row] } } return out } // Return [2][]uint32{rowIndices, colIndices} indicating which // elements of matrixT[c][r] have non-zero values. func onehotChunk2Indirect(matrixT [][]int8) [2][]uint32 { var nz [2][]uint32 for c, col := range matrixT { for r, val := range col { if val != 0 { nz[0] = append(nz[0], uint32(r)) nz[1] = append(nz[1], uint32(c)) } } } return nz }