the_job@ redirects standard output to a file called @the_job@
* @"script"@ specifies the name of the script to run. The script is searched for in the "crunch_scripts/" subdirectory of the @git@ checkout specified by @"script_version"@.
* @"script_version"@ specifies the version of the script that you wish to run. This can be in the form of an explicit @git@ revision hash, or in the form "repository:branch" (in which case it will take the HEAD of the specified branch). Arvados logs the script version that was used in the run, enabling you to go back and re-run any past job with the guarantee that the exact same code will be used as was used in the previous run. You can access a list of available @git@ repositories on the Arvados workbench under "Compute %(rarr)→% Code repositories":http://{{site.arvados_workbench_host}}/repositiories .
* @"script_parameters"@ are provided to the script. In this case, the input is the locator for the collection that we inspected in the previous section.
Use @arv job create@ to actually submit the job. It should print out a JSON object which describes the newly created job:
~$ arv job create --job "$(cat the_job)"
{
"href":"https://qr1hi.arvadosapi.com/arvados/v1/jobs/qr1hi-8i9sb-1pm1t02dezhupss",
"kind":"arvados#job",
"etag":"ax3cn7w9whq2hdh983yxvq09p",
"uuid":"qr1hi-8i9sb-1pm1t02dezhupss",
"owner_uuid":"qr1hi-tpzed-9zdpkpni2yddge6",
"created_at":"2013-12-16T20:44:32Z",
"modified_by_client_uuid":"qr1hi-ozdt8-obw7foaks3qjyej",
"modified_by_user_uuid":"qr1hi-tpzed-9zdpkpni2yddge6",
"modified_at":"2013-12-16T20:44:32Z",
"updated_at":"2013-12-16T20:44:33Z",
"submit_id":null,
"priority":null,
"script":"hash",
"script_parameters":{
"input":"c1bad4b39ca5a924e481008009d94e32+210"
},
"script_version":"d9cd657b733d578ac0d2167dd75967aa4f22e0ac",
"cancelled_at":null,
"cancelled_by_client_uuid":null,
"cancelled_by_user_uuid":null,
"started_at":null,
"finished_at":null,
"output":null,
"success":null,
"running":null,
"is_locked_by_uuid":null,
"log":null,
"runtime_constraints":{},
"tasks_summary":{},
"dependencies":[
"c1bad4b39ca5a924e481008009d94e32+210"
],
"log_stream_href":"https://qr1hi.arvadosapi.com/arvados/v1/jobs/qr1hi-8i9sb-1pm1t02dezhupss/log_tail_follow"
}
The job is now queued and will start running as soon as it reaches the front of the queue. Fields to pay attention to include:
* @"uuid"@ is the unique identifier for this specific job
* @"script_version"@ is the actual revision of the script used. This is useful if the version was described using the "repository:branch" format.
h2. Monitor job progress
Go to the "Workbench dashboard":http://{{site.arvados_workbench_host}}. Your job should be at the top of the "Recent jobs" table. This table refreshes automatically. When the job has completed successfully, it will show finished in the *Status* column.
On the command line, you can access log messages while the job runs using @arv job log_tail_follow@:
notextile. ~$ arv job log_tail_follow --uuid qr1hi-8i9sb-xxxxxxxxxxxxxxx
This will print out the last several lines of the log for that job.
h2. Inspect the job output
On the "Workbench dashboard":http://{{site.arvados_workbench_host}}, look for the *Output* column of the *Recent jobs* table. Click on the link under *Output* for your job to go to the files page with the job output. The files page lists all the files that were output by the job. Click on the link under the *files* column to view a file, or click on the download icon to download the output file.
On the command line, you can use @arv job get@ to access a JSON object describing the output:
~$ arv job get --uuid qr1hi-8i9sb-xxxxxxxxxxxxxxx
{
"href":"https://qr1hi.arvadosapi.com/arvados/v1/jobs/qr1hi-8i9sb-1pm1t02dezhupss",
"kind":"arvados#job",
"etag":"1bk98tdj0qipjy0rvrj03ta5r",
"uuid":"qr1hi-8i9sb-1pm1t02dezhupss",
"owner_uuid":"qr1hi-tpzed-9zdpkpni2yddge6",
"created_at":"2013-12-16T20:44:32Z",
"modified_by_client_uuid":null,
"modified_by_user_uuid":"qr1hi-tpzed-9zdpkpni2yddge6",
"modified_at":"2013-12-16T20:44:55Z",
"updated_at":"2013-12-16T20:44:55Z",
"submit_id":null,
"priority":null,
"script":"hash",
"script_parameters":{
"input":"c1bad4b39ca5a924e481008009d94e32+210"
},
"script_version":"d9cd657b733d578ac0d2167dd75967aa4f22e0ac",
"cancelled_at":null,
"cancelled_by_client_uuid":null,
"cancelled_by_user_uuid":null,
"started_at":"2013-12-16T20:44:36Z",
"finished_at":"2013-12-16T20:44:53Z",
"output":"880b55fb4470b148a447ff38cacdd952+54",
"success":true,
"running":false,
"is_locked_by_uuid":"qr1hi-tpzed-9zdpkpni2yddge6",
"log":"2afdc6c8b67372ffd22d8ce89d35411f+91",
"runtime_constraints":{},
"tasks_summary":{
"done":2,
"running":0,
"failed":0,
"todo":0
},
"dependencies":[
"c1bad4b39ca5a924e481008009d94e32+210"
],
"log_stream_href":null
}
* @"output"@ is the unique identifier for this specific job's output. This is a Keep collection. Because the output of Arvados jobs should be deterministic, the known expected output is 880b55fb4470b148a447ff38cacdd952+54
.
Now you can list the files in the collection:
~$ arv keep ls 880b55fb4470b148a447ff38cacdd952+54
md5sum.txt
This collection consists of the @md5sum.txt@ file. Use @arv keep get@ to show the contents of the @md5sum.txt@ file:
~$ arv keep get 880b55fb4470b148a447ff38cacdd952+54/md5sum.txt
44b8ae3fde7a8a88d2f7ebd237625b4f var-GS000016015-ASM.tsv.bz2
This md5 hash matches the md5 hash which we computed earlier.
h2. The job log
When the job completes, you can access the job log. On the workbench dashboard, this is the link under the *Log* column of the *Recent jobs* table.
On the command line, the keep identifier listed in the @"log"@ field from @arv job get@ specifies a collection. You can list the files in the collection:
~$ arv keep ls xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx+91
qr1hi-8i9sb-xxxxxxxxxxxxxxx.log.txt
The log collection consists of one log file named with the job id. You can access it using @arv keep get@:
~$ arv keep get xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx+91/qr1hi-8i9sb-xxxxxxxxxxxxxxx.log.txt
2013-12-16_20:44:35 qr1hi-8i9sb-1pm1t02dezhupss 7575 check slurm allocation
2013-12-16_20:44:35 qr1hi-8i9sb-1pm1t02dezhupss 7575 node compute13 - 8 slots
2013-12-16_20:44:36 qr1hi-8i9sb-1pm1t02dezhupss 7575 start
2013-12-16_20:44:36 qr1hi-8i9sb-1pm1t02dezhupss 7575 Install revision d9cd657b733d578ac0d2167dd75967aa4f22e0ac
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 Clean-work-dir exited 0
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 Install exited 0
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 script hash
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 script_version d9cd657b733d578ac0d2167dd75967aa4f22e0ac
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 script_parameters {"input":"c1bad4b39ca5a924e481008009d94e32+210"}
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 runtime_constraints {"max_tasks_per_node":0}
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 start level 0
2013-12-16_20:44:37 qr1hi-8i9sb-1pm1t02dezhupss 7575 status: 0 done, 0 running, 1 todo
2013-12-16_20:44:38 qr1hi-8i9sb-1pm1t02dezhupss 7575 0 job_task qr1hi-ot0gb-23c1k3kwrf8da62
2013-12-16_20:44:38 qr1hi-8i9sb-1pm1t02dezhupss 7575 0 child 7681 started on compute13.1
2013-12-16_20:44:38 qr1hi-8i9sb-1pm1t02dezhupss 7575 status: 0 done, 1 running, 0 todo
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 0 child 7681 on compute13.1 exit 0 signal 0 success=true
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 0 success in 1 seconds
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 0 output
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 wait for last 0 children to finish
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 status: 1 done, 0 running, 1 todo
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 start level 1
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 status: 1 done, 0 running, 1 todo
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 1 job_task qr1hi-ot0gb-iwr0o3unqothg28
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 1 child 7716 started on compute13.1
2013-12-16_20:44:39 qr1hi-8i9sb-1pm1t02dezhupss 7575 status: 1 done, 1 running, 0 todo
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 1 child 7716 on compute13.1 exit 0 signal 0 success=true
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 1 success in 13 seconds
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 1 output 880b55fb4470b148a447ff38cacdd952+54
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 wait for last 0 children to finish
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 status: 2 done, 0 running, 0 todo
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 release job allocation
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 Freeze not implemented
2013-12-16_20:44:52 qr1hi-8i9sb-1pm1t02dezhupss 7575 collate
2013-12-16_20:44:53 qr1hi-8i9sb-1pm1t02dezhupss 7575 output 880b55fb4470b148a447ff38cacdd952+54
2013-12-16_20:44:53 qr1hi-8i9sb-1pm1t02dezhupss 7575 finish
This concludes the first tutorial. In the next tutorial, we will "write a crunch job script.":tutorial-firstscript.html